2024-10-12 23:17:00 +08:00

211 lines
6.8 KiB
Python

import asyncio
import logging
import os
from typing import Optional
import httpx
import json
import base64
from PIL import Image
import numpy as np
from rapidocr_openvino import RapidOCR
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import yaml
import io
MAX_THUMBNAIL_SIZE = (1920, 1920)
from fastapi import APIRouter, Request, HTTPException
from memos.schemas import Entity, MetadataType
METADATA_FIELD_NAME = "ocr_result"
PLUGIN_NAME = "ocr"
router = APIRouter(tags=[PLUGIN_NAME], responses={404: {"description": "Not found"}})
endpoint = None
token = None
concurrency = None
semaphore = None
use_local = False
ocr = None
thread_pool = None
# Configure logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def image2base64(img_path):
try:
with Image.open(img_path) as img:
img = img.convert("RGB")
img.thumbnail(MAX_THUMBNAIL_SIZE)
buffered = io.BytesIO()
img.save(buffered, format="JPEG")
encoded_string = base64.b64encode(buffered.getvalue()).decode("utf-8")
return encoded_string
except Exception as e:
logger.error(f"Error processing image {img_path}: {str(e)}")
return None
async def fetch(endpoint: str, client, image_base64, headers: Optional[dict] = None):
async with semaphore: # 使用信号量控制并发
response = await client.post(
f"{endpoint}",
json={"image_base64": image_base64},
timeout=60,
headers=headers,
)
if response.status_code != 200:
return None
return response.json()
def convert_ocr_results(results):
if results is None:
return []
converted = []
for result in results:
item = {"dt_boxes": result[0], "rec_txt": result[1], "score": result[2]}
converted.append(item)
return converted
def predict_local(img_path):
try:
with Image.open(img_path) as img:
img = img.convert("RGB")
img.thumbnail(MAX_THUMBNAIL_SIZE)
img_array = np.array(img)
results, _ = ocr(img_array)
return convert_ocr_results(results)
except Exception as e:
logger.error(f"Error processing image {img_path}: {str(e)}")
return None
async def async_predict_local(img_path):
loop = asyncio.get_running_loop()
results = await loop.run_in_executor(thread_pool, partial(predict_local, img_path))
return results
# Modify the predict function to use semaphore
async def predict(img_path):
if use_local:
return await async_predict_local(img_path)
image_base64 = image2base64(img_path)
if not image_base64:
return None
async with httpx.AsyncClient() as client:
headers = {"Authorization": f"Bearer {token}"} if token else {}
return await fetch(endpoint, client, image_base64, headers)
@router.get("/")
async def read_root():
return {"healthy": True}
@router.post("", include_in_schema=False)
@router.post("/")
async def ocr(entity: Entity, request: Request):
if not entity.file_type_group == "image":
return {METADATA_FIELD_NAME: "{}"}
# Check if the metadata field already exists and has a non-empty value
existing_metadata = entity.get_metadata_by_key(METADATA_FIELD_NAME)
if existing_metadata and existing_metadata.value and existing_metadata.value.strip():
logger.info(f"Skipping OCR processing for file: {entity.filepath} due to existing metadata")
return {METADATA_FIELD_NAME: existing_metadata.value}
# Check if the entity contains the tag "low_info"
if any(tag.name == "low_info" for tag in entity.tags):
logger.info(f"Skipping OCR processing for file: {entity.filepath} due to 'low_info' tag")
return {METADATA_FIELD_NAME: "{}"}
location_url = request.headers.get("Location")
if not location_url:
raise HTTPException(status_code=400, detail="Location header is missing")
patch_url = f"{location_url}/metadata"
ocr_result = await predict(entity.filepath)
logger.info(ocr_result)
if not ocr_result:
logger.info(f"No OCR result found for file: {entity.filepath}")
return {METADATA_FIELD_NAME: "{}"}
# Call the URL to patch the entity's metadata
async with httpx.AsyncClient() as client:
response = await client.patch(
patch_url,
json={
"metadata_entries": [
{
"key": METADATA_FIELD_NAME,
"value": json.dumps(
ocr_result,
default=lambda o: o.item() if hasattr(o, "item") else o,
),
"source": PLUGIN_NAME,
"data_type": MetadataType.JSON_DATA.value,
}
]
},
timeout=30,
)
# Check if the patch request was successful
if response.status_code != 200:
raise HTTPException(
status_code=response.status_code, detail="Failed to patch entity metadata"
)
return {
METADATA_FIELD_NAME: json.dumps(
ocr_result,
default=lambda o: o.item() if hasattr(o, "item") else o,
)
}
def init_plugin(config):
global endpoint, token, concurrency, semaphore, use_local, ocr, thread_pool
endpoint = config.endpoint
token = config.token
concurrency = config.concurrency
use_local = config.use_local
semaphore = asyncio.Semaphore(concurrency)
if use_local:
config_path = os.path.join(os.path.dirname(__file__), "ppocr.yaml")
# Load and update the config file with absolute model paths
with open(config_path, 'r') as f:
ocr_config = yaml.safe_load(f)
model_dir = os.path.join(os.path.dirname(__file__), "models")
ocr_config['Det']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Det']['model_path']))
ocr_config['Cls']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Cls']['model_path']))
ocr_config['Rec']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Rec']['model_path']))
# Save the updated config to a temporary file with strings wrapped in double quotes
temp_config_path = os.path.join(os.path.dirname(__file__), "temp_ppocr.yaml")
with open(temp_config_path, 'w') as f:
yaml.safe_dump(ocr_config, f)
ocr = RapidOCR(config_path=temp_config_path)
thread_pool = ThreadPoolExecutor(max_workers=concurrency)
logger.info("OCR plugin initialized")
logger.info(f"Endpoint: {endpoint}")
logger.info(f"Token: {token}")
logger.info(f"Concurrency: {concurrency}")
logger.info(f"Use local: {use_local}")