mirror of
https://github.com/tcsenpai/pensieve.git
synced 2025-06-06 19:25:24 +00:00
183 lines
5.3 KiB
Python
183 lines
5.3 KiB
Python
from fastapi import FastAPI, HTTPException
|
|
import torch
|
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
|
from qwen_vl_utils import process_vision_info
|
|
import time
|
|
from memos_ml_backends.schemas import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ModelData,
|
|
ModelsResponse,
|
|
get_image_from_url,
|
|
)
|
|
|
|
MODEL_INFO = {"name": "Qwen2-VL-2B-Instruct", "max_model_len": 32768}
|
|
|
|
# 检测可用的设备
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda")
|
|
elif torch.backends.mps.is_available():
|
|
device = torch.device("mps")
|
|
else:
|
|
device = torch.device("cpu")
|
|
|
|
torch_dtype = (
|
|
torch.float32
|
|
if (torch.cuda.is_available() and torch.cuda.get_device_capability()[0] <= 6)
|
|
or (not torch.cuda.is_available() and not torch.backends.mps.is_available())
|
|
else torch.float16
|
|
)
|
|
print(f"Using device: {device}")
|
|
|
|
# Load Qwen2VL model
|
|
qwen2vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
"Qwen/Qwen2-VL-2B-Instruct",
|
|
torch_dtype=torch_dtype,
|
|
device_map="auto",
|
|
).to(device, torch_dtype)
|
|
qwen2vl_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4")
|
|
|
|
app = FastAPI()
|
|
|
|
|
|
async def generate_qwen2vl_result(text_input, image_input, max_tokens):
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "image": image_input},
|
|
{"type": "text", "text": text_input},
|
|
],
|
|
}
|
|
]
|
|
|
|
text = qwen2vl_processor.apply_chat_template(
|
|
messages, tokenize=False, add_generation_prompt=True
|
|
)
|
|
|
|
image_inputs, video_inputs = process_vision_info(messages)
|
|
|
|
inputs = qwen2vl_processor(
|
|
text=[text],
|
|
images=image_inputs,
|
|
videos=video_inputs,
|
|
padding=True,
|
|
return_tensors="pt",
|
|
)
|
|
inputs = inputs.to(device)
|
|
|
|
generated_ids = qwen2vl_model.generate(**inputs, max_new_tokens=(max_tokens or 512))
|
|
|
|
generated_ids_trimmed = [
|
|
out_ids[len(in_ids) :]
|
|
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
]
|
|
|
|
output_text = qwen2vl_processor.batch_decode(
|
|
generated_ids_trimmed,
|
|
skip_special_tokens=True,
|
|
clean_up_tokenization_spaces=False,
|
|
)
|
|
|
|
return output_text[0] if output_text else ""
|
|
|
|
|
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
|
async def chat_completions(request: ChatCompletionRequest):
|
|
try:
|
|
last_message = request.messages[-1]
|
|
text_input = last_message.get("content", "")
|
|
image_input = None
|
|
|
|
if isinstance(text_input, list):
|
|
for content in text_input:
|
|
if content.get("type") == "image_url":
|
|
image_url = content["image_url"].get("url")
|
|
image_input = await get_image_from_url(image_url)
|
|
break
|
|
text_input = " ".join(
|
|
[
|
|
content["text"]
|
|
for content in text_input
|
|
if content.get("type") == "text"
|
|
]
|
|
)
|
|
|
|
if image_input is None:
|
|
raise ValueError("Image input is required")
|
|
|
|
parsed_answer = await generate_qwen2vl_result(
|
|
text_input, image_input, request.max_tokens
|
|
)
|
|
|
|
result = ChatCompletionResponse(
|
|
id=str(int(time.time())),
|
|
object="chat.completion",
|
|
created=int(time.time()),
|
|
model=request.model,
|
|
choices=[
|
|
{
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": parsed_answer,
|
|
},
|
|
"finish_reason": "stop",
|
|
}
|
|
],
|
|
usage={
|
|
"prompt_tokens": 0,
|
|
"total_tokens": 0,
|
|
"completion_tokens": 0,
|
|
},
|
|
)
|
|
|
|
return result
|
|
except Exception as e:
|
|
print(f"Error generating chat completion: {str(e)}")
|
|
raise HTTPException(
|
|
status_code=500, detail=f"Error generating chat completion: {str(e)}"
|
|
)
|
|
|
|
|
|
# 添加新的 GET /v1/models 端点
|
|
@app.get("/v1/models", response_model=ModelsResponse)
|
|
async def get_models():
|
|
model_data = ModelData(
|
|
id=MODEL_INFO["name"],
|
|
created=int(time.time()),
|
|
max_model_len=MODEL_INFO["max_model_len"],
|
|
permission=[
|
|
{
|
|
"id": f"modelperm-{MODEL_INFO['name']}",
|
|
"object": "model_permission",
|
|
"created": int(time.time()),
|
|
"allow_create_engine": False,
|
|
"allow_sampling": False,
|
|
"allow_logprobs": False,
|
|
"allow_search_indices": False,
|
|
"allow_view": False,
|
|
"allow_fine_tuning": False,
|
|
"organization": "*",
|
|
"group": None,
|
|
"is_blocking": False,
|
|
}
|
|
],
|
|
)
|
|
|
|
return ModelsResponse(data=[model_data])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
import uvicorn
|
|
|
|
parser = argparse.ArgumentParser(description="Run the Qwen2VL server")
|
|
parser.add_argument(
|
|
"--port", type=int, default=8000, help="Port to run the server on"
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
print("Using Qwen2VL model")
|
|
uvicorn.run(app, host="0.0.0.0", port=args.port)
|