2025-05-23 12:19:53 +02:00
2025-05-23 10:11:30 +02:00
2025-05-23 12:13:58 +02:00
2025-05-23 10:11:30 +02:00
2025-05-23 12:01:45 +02:00
2025-05-23 12:01:45 +02:00
2025-05-23 12:19:53 +02:00
2025-05-23 11:33:14 +02:00
2025-05-23 12:13:58 +02:00
2025-05-23 10:17:52 +02:00

Audio/Video Transcription Web App

A web application for transcribing audio and video files using faster-whisper, with support for YouTube videos and optional summarization using Ollama.

Features

  • Transcribe local audio/video files
  • Process YouTube videos (with subtitle extraction when available)
  • Automatic language detection
  • Multiple Whisper model options
  • Optional text summarization using Ollama
  • Modern web interface with Gradio
  • Docker support with CUDA
  • Configurable settings via config.ini

Requirements

  • Docker and Docker Compose
  • NVIDIA GPU with CUDA support
  • NVIDIA Container Toolkit
  • Ollama installed locally (optional, for summarization)

Installation

  1. Clone the repository:
git clone <repository-url>
cd whisperapp
  1. Install NVIDIA Container Toolkit (if not already installed):
# Add NVIDIA package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

# Install nvidia-docker2 package
sudo apt-get update
sudo apt-get install -y nvidia-docker2

# Restart the Docker daemon
sudo systemctl restart docker
  1. Install Ollama locally (optional, for summarization):
curl https://ollama.ai/install.sh | sh
  1. Copy the example configuration file:
cp .env.example .env
  1. Edit the configuration files:
  • .env: Set your environment variables
  • config.ini: Configure Whisper, Ollama, and application settings

Running the Application

  1. Start Ollama locally (if you want to use summarization):
ollama serve
  1. Build and start the Whisper app container:
docker-compose up --build
  1. Open your web browser and navigate to:
http://localhost:7860

Configuration

Environment Variables (.env)

# Server configuration
SERVER_NAME=0.0.0.0
SERVER_PORT=7860
SHARE=true

Application Settings (config.ini)

[whisper]
default_model = base
device = cuda
compute_type = float16
beam_size = 5
vad_filter = true

[app]
max_duration = 3600
server_name = 0.0.0.0
server_port = 7860
share = true

[models]
available_models = tiny,base,small,medium,large-v1,large-v2,large-v3

[languages]
available_languages = en,es,fr,de,it,pt,nl,ja,ko,zh

[ollama]
enabled = false
url = http://host.docker.internal:11434
default_model = mistral
summarize_prompt = Please provide a comprehensive yet concise summary of the following text. Focus on the main points, key arguments, and important details while maintaining accuracy and completeness. Here's the text to summarize: 

Features in Detail

Local File Transcription

  • Supports various audio and video formats
  • Automatic language detection
  • Multiple Whisper model options
  • Optional summarization with Ollama

YouTube Video Processing

  • Supports youtube.com, youtu.be, and invidious URLs
  • Automatically extracts subtitles if available
  • Falls back to transcription if no subtitles found
  • Optional summarization with Ollama

Summarization

  • Uses locally running Ollama for text summarization
  • Configurable model selection
  • Customizable prompt
  • Available for both local files and YouTube videos

Notes

  • For better accuracy, use larger models (medium, large)
  • Processing time increases with model size
  • GPU is recommended for faster processing
  • Maximum audio duration is configurable (default: 60 minutes)
  • YouTube videos will first try to use available subtitles
  • If no subtitles are available, the video will be transcribed
  • Ollama summarization is optional and requires Ollama to be running locally
  • The application runs in a Docker container with CUDA support
  • Models are downloaded and cached in the models directory
  • The container connects to the local Ollama instance using host.docker.internal

License

This project is licensed under the MIT License - see the LICENSE file for details.

Description
No description provided
Readme
Languages
Python 100%