mirror of
https://github.com/tcsenpai/youlama.git
synced 2025-06-04 02:10:21 +00:00
moved to docker for cuda support in whisper
This commit is contained in:
parent
d5a2caed7b
commit
7fd251eb0c
30
Dockerfile
Normal file
30
Dockerfile
Normal file
@ -0,0 +1,30 @@
|
||||
FROM nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04
|
||||
|
||||
# Set environment variables
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
|
||||
# Install system dependencies
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3.10 \
|
||||
python3-pip \
|
||||
ffmpeg \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Copy requirements first to leverage Docker cache
|
||||
COPY requirements.txt .
|
||||
|
||||
# Install Python dependencies
|
||||
RUN pip3 install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy application code
|
||||
COPY . .
|
||||
|
||||
# Expose port
|
||||
EXPOSE 7860
|
||||
|
||||
# Set entrypoint
|
||||
ENTRYPOINT ["python3", "app.py"]
|
90
README.md
90
README.md
@ -1,23 +1,23 @@
|
||||
# Audio/Video Transcription Web App
|
||||
|
||||
A web application for transcribing audio and video files using WhisperX, with support for YouTube videos and optional summarization using Ollama.
|
||||
A web application for transcribing audio and video files using faster-whisper, with support for YouTube videos and optional summarization using Ollama.
|
||||
|
||||
## Features
|
||||
|
||||
- Transcribe local audio/video files
|
||||
- Process YouTube videos (with subtitle extraction when available)
|
||||
- Automatic language detection
|
||||
- Multiple WhisperX model options
|
||||
- Multiple Whisper model options
|
||||
- Optional text summarization using Ollama
|
||||
- Modern web interface with Gradio
|
||||
- Docker support with CUDA
|
||||
- Configurable settings via config.ini
|
||||
|
||||
## Requirements
|
||||
|
||||
- Python 3.8+
|
||||
- CUDA-compatible GPU (recommended)
|
||||
- FFmpeg installed on your system
|
||||
- Ollama (optional, for summarization)
|
||||
- Docker and Docker Compose
|
||||
- NVIDIA GPU with CUDA support
|
||||
- NVIDIA Container Toolkit (nvidia-docker2)
|
||||
|
||||
## Installation
|
||||
|
||||
@ -27,33 +27,52 @@ git clone <repository-url>
|
||||
cd whisperapp
|
||||
```
|
||||
|
||||
2. Install the required packages:
|
||||
2. Install NVIDIA Container Toolkit (if not already installed):
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
# Add NVIDIA package repositories
|
||||
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
||||
|
||||
# Install nvidia-docker2 package
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y nvidia-docker2
|
||||
|
||||
# Restart the Docker daemon
|
||||
sudo systemctl restart docker
|
||||
```
|
||||
|
||||
3. Install FFmpeg (if not already installed):
|
||||
- Ubuntu/Debian:
|
||||
```bash
|
||||
sudo apt update && sudo apt install ffmpeg
|
||||
```
|
||||
- macOS:
|
||||
```bash
|
||||
brew install ffmpeg
|
||||
```
|
||||
- Windows: Download from [FFmpeg website](https://ffmpeg.org/download.html)
|
||||
|
||||
4. Copy the example configuration file:
|
||||
3. Copy the example configuration file:
|
||||
```bash
|
||||
cp .env.example .env
|
||||
```
|
||||
|
||||
5. Edit the configuration files:
|
||||
4. Edit the configuration files:
|
||||
- `.env`: Set your environment variables
|
||||
- `config.ini`: Configure WhisperX, Ollama, and application settings
|
||||
- `config.ini`: Configure Whisper, Ollama, and application settings
|
||||
|
||||
## Running with Docker
|
||||
|
||||
1. Build and start the containers:
|
||||
```bash
|
||||
docker-compose up --build
|
||||
```
|
||||
|
||||
2. Open your web browser and navigate to:
|
||||
```
|
||||
http://localhost:7860
|
||||
```
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables (.env)
|
||||
|
||||
```ini
|
||||
# Server configuration
|
||||
SERVER_NAME=0.0.0.0
|
||||
SERVER_PORT=7860
|
||||
SHARE=true
|
||||
```
|
||||
|
||||
### Application Settings (config.ini)
|
||||
|
||||
@ -61,9 +80,9 @@ cp .env.example .env
|
||||
[whisper]
|
||||
default_model = base
|
||||
device = cuda
|
||||
compute_type = float32
|
||||
batch_size = 16
|
||||
vad = true
|
||||
compute_type = float16
|
||||
beam_size = 5
|
||||
vad_filter = true
|
||||
|
||||
[app]
|
||||
max_duration = 3600
|
||||
@ -84,29 +103,12 @@ default_model = mistral
|
||||
summarize_prompt = Please provide a comprehensive yet concise summary of the following text. Focus on the main points, key arguments, and important details while maintaining accuracy and completeness. Here's the text to summarize:
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
1. Start the application:
|
||||
```bash
|
||||
python app.py
|
||||
```
|
||||
|
||||
2. Open your web browser and navigate to:
|
||||
```
|
||||
http://localhost:7860
|
||||
```
|
||||
|
||||
3. Use the interface to:
|
||||
- Upload and transcribe local audio/video files
|
||||
- Process YouTube videos
|
||||
- Generate summaries (if Ollama is configured)
|
||||
|
||||
## Features in Detail
|
||||
|
||||
### Local File Transcription
|
||||
- Supports various audio and video formats
|
||||
- Automatic language detection
|
||||
- Multiple WhisperX model options
|
||||
- Multiple Whisper model options
|
||||
- Optional summarization with Ollama
|
||||
|
||||
### YouTube Video Processing
|
||||
@ -130,6 +132,8 @@ http://localhost:7860
|
||||
- YouTube videos will first try to use available subtitles
|
||||
- If no subtitles are available, the video will be transcribed
|
||||
- Ollama summarization is optional and requires Ollama to be running
|
||||
- The application runs in a Docker container with CUDA support
|
||||
- Models are downloaded and cached in the `models` directory
|
||||
|
||||
## License
|
||||
|
||||
|
59
app.py
59
app.py
@ -6,7 +6,7 @@ from typing import List, Tuple, Optional
|
||||
import youtube_handler as yt
|
||||
from ollama_handler import OllamaHandler
|
||||
import logging
|
||||
import whisperx
|
||||
from faster_whisper import WhisperModel
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
@ -18,7 +18,7 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def check_cuda_compatibility():
|
||||
"""Check if the current CUDA setup is compatible with WhisperX."""
|
||||
"""Check if the current CUDA setup is compatible with faster-whisper."""
|
||||
logger.info("Checking CUDA compatibility...")
|
||||
|
||||
# Check PyTorch CUDA
|
||||
@ -39,7 +39,7 @@ def check_cuda_compatibility():
|
||||
cuda_major = int(cuda_version.split(".")[0])
|
||||
if cuda_major > 11:
|
||||
logger.warning(
|
||||
f"CUDA {cuda_version} might not be fully compatible with WhisperX. Recommended: CUDA 11.x"
|
||||
f"CUDA {cuda_version} might not be fully compatible with faster-whisper. Recommended: CUDA 11.x"
|
||||
)
|
||||
logger.info(
|
||||
"Consider creating a new environment with CUDA 11.x if you encounter issues"
|
||||
@ -61,11 +61,12 @@ def load_config() -> configparser.ConfigParser:
|
||||
# Load configuration
|
||||
config = load_config()
|
||||
|
||||
# WhisperX configuration
|
||||
# Whisper configuration
|
||||
DEFAULT_MODEL = config["whisper"]["default_model"]
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
COMPUTE_TYPE = "float32" # Always use float32 for better compatibility
|
||||
BATCH_SIZE = config["whisper"].getint("batch_size")
|
||||
COMPUTE_TYPE = "float16" if DEVICE == "cuda" else "float32"
|
||||
BEAM_SIZE = config["whisper"].getint("beam_size")
|
||||
VAD_FILTER = config["whisper"].getboolean("vad_filter")
|
||||
|
||||
# Log device and compute type
|
||||
logger.info(f"PyTorch CUDA available: {torch.cuda.is_available()}")
|
||||
@ -75,7 +76,7 @@ if torch.cuda.is_available():
|
||||
logger.info(f"cuDNN version: {torch.backends.cudnn.version()}")
|
||||
logger.info(f"Using device: {DEVICE}, compute type: {COMPUTE_TYPE}")
|
||||
logger.info(
|
||||
f"Default model: {DEFAULT_MODEL}, batch size: {BATCH_SIZE}"
|
||||
f"Default model: {DEFAULT_MODEL}, beam size: {BEAM_SIZE}, VAD filter: {VAD_FILTER}"
|
||||
)
|
||||
|
||||
# App configuration
|
||||
@ -96,10 +97,10 @@ DEFAULT_OLLAMA_MODEL = ollama.get_default_model() if OLLAMA_AVAILABLE else None
|
||||
|
||||
|
||||
def load_model(model_name: str):
|
||||
"""Load the WhisperX model with the specified configuration."""
|
||||
"""Load the Whisper model with the specified configuration."""
|
||||
try:
|
||||
logger.info(f"Loading WhisperX model: {model_name}")
|
||||
return whisperx.load_model(
|
||||
logger.info(f"Loading Whisper model: {model_name}")
|
||||
return WhisperModel(
|
||||
model_name,
|
||||
device=DEVICE,
|
||||
compute_type=COMPUTE_TYPE,
|
||||
@ -108,7 +109,7 @@ def load_model(model_name: str):
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading model with CUDA: {str(e)}")
|
||||
logger.info("Falling back to CPU")
|
||||
return whisperx.load_model(
|
||||
return WhisperModel(
|
||||
model_name,
|
||||
device="cpu",
|
||||
compute_type="float32",
|
||||
@ -123,7 +124,7 @@ def transcribe_audio(
|
||||
summarize: bool = False,
|
||||
ollama_model: str = None,
|
||||
) -> tuple[str, str, Optional[str]]:
|
||||
"""Transcribe audio using the selected WhisperX model."""
|
||||
"""Transcribe audio using the selected Whisper model."""
|
||||
try:
|
||||
logger.info(f"Starting transcription of {audio_file}")
|
||||
logger.info(
|
||||
@ -135,18 +136,19 @@ def transcribe_audio(
|
||||
|
||||
# Transcribe the audio
|
||||
logger.info("Starting audio transcription...")
|
||||
result = model.transcribe(
|
||||
segments, info = model.transcribe(
|
||||
audio_file,
|
||||
language=language if language != "Auto-detect" else None,
|
||||
batch_size=16, # WhisperX uses batch_size instead of beam_size
|
||||
beam_size=BEAM_SIZE,
|
||||
vad_filter=VAD_FILTER,
|
||||
)
|
||||
|
||||
# Get the full text with timestamps
|
||||
full_text = " ".join([segment["text"] for segment in result["segments"]])
|
||||
full_text = " ".join([segment.text for segment in segments])
|
||||
logger.info(
|
||||
f"Transcription completed. Text length: {len(full_text)} characters"
|
||||
)
|
||||
logger.info(f"Detected language: {result['language']}")
|
||||
logger.info(f"Detected language: {info.language}")
|
||||
|
||||
# Generate summary if requested
|
||||
summary = None
|
||||
@ -158,7 +160,7 @@ def transcribe_audio(
|
||||
else:
|
||||
logger.warning("Failed to generate summary")
|
||||
|
||||
return full_text, result["language"], summary
|
||||
return full_text, info.language, summary
|
||||
except Exception as e:
|
||||
logger.error(f"Error during transcription: {str(e)}")
|
||||
return f"Error during transcription: {str(e)}", None, None
|
||||
@ -236,7 +238,7 @@ def process_youtube_url(
|
||||
def create_interface():
|
||||
"""Create and return the Gradio interface."""
|
||||
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
||||
gr.Markdown("# 🎙️ Audio/Video Transcription with WhisperX")
|
||||
gr.Markdown("# 🎙️ Audio/Video Transcription with Whisper")
|
||||
gr.Markdown(
|
||||
"### A powerful tool for transcribing and summarizing audio/video content"
|
||||
)
|
||||
@ -264,7 +266,7 @@ def create_interface():
|
||||
yt_model_dropdown = gr.Dropdown(
|
||||
choices=WHISPER_MODELS,
|
||||
value=DEFAULT_MODEL,
|
||||
label="Select WhisperX Model",
|
||||
label="Select Whisper Model",
|
||||
)
|
||||
yt_language_dropdown = gr.Dropdown(
|
||||
choices=["Auto-detect"] + AVAILABLE_LANGUAGES,
|
||||
@ -376,7 +378,7 @@ def create_interface():
|
||||
gr.Markdown(
|
||||
"""
|
||||
### Local File Transcription
|
||||
Upload an audio or video file to transcribe it using WhisperX.
|
||||
Upload an audio or video file to transcribe it using Whisper.
|
||||
- Supports various audio and video formats
|
||||
- Automatic language detection
|
||||
- Optional summarization with Ollama
|
||||
@ -392,7 +394,7 @@ def create_interface():
|
||||
model_dropdown = gr.Dropdown(
|
||||
choices=WHISPER_MODELS,
|
||||
value=DEFAULT_MODEL,
|
||||
label="Select WhisperX Model",
|
||||
label="Select Whisper Model",
|
||||
)
|
||||
language_dropdown = gr.Dropdown(
|
||||
choices=["Auto-detect"] + AVAILABLE_LANGUAGES,
|
||||
@ -454,30 +456,29 @@ def create_interface():
|
||||
model = load_model(model)
|
||||
|
||||
status = "Transcribing audio..."
|
||||
result = model.transcribe(
|
||||
segments, info = model.transcribe(
|
||||
audio,
|
||||
language=lang if lang != "Auto-detect" else None,
|
||||
batch_size=16, # WhisperX uses batch_size instead of beam_size
|
||||
beam_size=BEAM_SIZE,
|
||||
vad_filter=VAD_FILTER,
|
||||
)
|
||||
|
||||
# Get the full text with timestamps
|
||||
full_text = " ".join(
|
||||
[segment["text"] for segment in result["segments"]]
|
||||
)
|
||||
full_text = " ".join([segment.text for segment in segments])
|
||||
|
||||
if summarize and OLLAMA_AVAILABLE:
|
||||
status = "Generating summary..."
|
||||
summary = ollama.summarize(full_text, ollama_model)
|
||||
return (
|
||||
full_text,
|
||||
result["language"],
|
||||
info.language,
|
||||
summary if summary else "",
|
||||
"Processing complete!",
|
||||
)
|
||||
else:
|
||||
return (
|
||||
full_text,
|
||||
result["language"],
|
||||
info.language,
|
||||
"",
|
||||
"Processing complete!",
|
||||
)
|
||||
@ -527,7 +528,7 @@ def create_interface():
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger.info("Starting WhisperX Transcription Web App")
|
||||
logger.info("Starting Whisper Transcription Web App")
|
||||
|
||||
# Check CUDA compatibility before starting
|
||||
if not check_cuda_compatibility():
|
||||
|
@ -1,8 +1,9 @@
|
||||
[whisper]
|
||||
default_model = base
|
||||
device = cuda
|
||||
compute_type = float32
|
||||
batch_size = 16
|
||||
compute_type = float16
|
||||
beam_size = 5
|
||||
vad_filter = true
|
||||
|
||||
[app]
|
||||
max_duration = 3600
|
||||
|
38
docker-compose.yml
Normal file
38
docker-compose.yml
Normal file
@ -0,0 +1,38 @@
|
||||
version: '3.8'
|
||||
|
||||
services:
|
||||
whisperapp:
|
||||
build: .
|
||||
ports:
|
||||
- "7860:7860"
|
||||
volumes:
|
||||
- .:/app
|
||||
- ./models:/app/models
|
||||
environment:
|
||||
- NVIDIA_VISIBLE_DEVICES=all
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: all
|
||||
capabilities: [gpu]
|
||||
depends_on:
|
||||
- ollama
|
||||
|
||||
ollama:
|
||||
image: ollama/ollama:latest
|
||||
ports:
|
||||
- "11434:11434"
|
||||
volumes:
|
||||
- ollama_data:/root/.ollama
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: all
|
||||
capabilities: [gpu]
|
||||
|
||||
volumes:
|
||||
ollama_data:
|
@ -1,13 +1,14 @@
|
||||
gradio>=4.0.0
|
||||
# Choose one of these whisper implementations:
|
||||
whisperx>=3.0.0
|
||||
faster-whisper>=0.9.0
|
||||
torch>=2.0.0
|
||||
torchvision>=0.15.0
|
||||
torchaudio>=2.0.0
|
||||
yt-dlp>=2023.0.0
|
||||
yt-dlp>=2023.12.30
|
||||
python-dotenv>=1.0.0
|
||||
requests>=2.31.0
|
||||
ollama>=0.1.0
|
||||
# WhisperX dependencies
|
||||
ffmpeg-python>=0.2.0
|
||||
pyannote.audio>=3.1.1
|
||||
pyannote.audio>=3.1.1
|
||||
configparser>=6.0.0
|
Loading…
x
Reference in New Issue
Block a user