youlama/app.py
2025-05-23 10:11:30 +02:00

122 lines
4.0 KiB
Python

import os
import gradio as gr
from faster_whisper import WhisperModel
import torch
import configparser
from typing import List
def load_config() -> configparser.ConfigParser:
"""Load configuration from config.ini file."""
config = configparser.ConfigParser()
config_path = os.path.join(os.path.dirname(__file__), "config.ini")
config.read(config_path)
return config
# Load configuration
config = load_config()
# Whisper configuration
DEFAULT_MODEL = config["whisper"]["default_model"]
DEVICE = config["whisper"]["device"] if torch.cuda.is_available() else "cpu"
COMPUTE_TYPE = config["whisper"]["compute_type"] if DEVICE == "cuda" else "float32"
BEAM_SIZE = config["whisper"].getint("beam_size")
VAD_FILTER = config["whisper"].getboolean("vad_filter")
# App configuration
MAX_DURATION = config["app"].getint("max_duration")
SERVER_NAME = config["app"]["server_name"]
SERVER_PORT = config["app"].getint("server_port")
SHARE = config["app"].getboolean("share")
# Available models and languages
WHISPER_MODELS = config["models"]["available_models"].split(",")
AVAILABLE_LANGUAGES = config["languages"]["available_languages"].split(",")
def load_model(model_name: str) -> WhisperModel:
"""Load the Whisper model with the specified configuration."""
return WhisperModel(model_name, device=DEVICE, compute_type=COMPUTE_TYPE)
def transcribe_audio(
audio_file: str, model_name: str, language: str = None
) -> tuple[str, str]:
"""Transcribe audio using the selected Whisper model."""
try:
# Load the model
model = load_model(model_name)
# Transcribe the audio
segments, info = model.transcribe(
audio_file,
language=language if language != "Auto-detect" else None,
beam_size=BEAM_SIZE,
vad_filter=VAD_FILTER,
)
# Combine all segments into one text
full_text = " ".join([segment.text for segment in segments])
return full_text, info.language
except Exception as e:
return f"Error during transcription: {str(e)}", None
def create_interface():
"""Create and return the Gradio interface."""
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# 🎙️ Audio/Video Transcription with Whisper")
gr.Markdown("Upload an audio or video file to transcribe it using Whisper AI.")
with gr.Row():
with gr.Column():
# Input components
audio_input = gr.Audio(
label="Upload Audio/Video", type="filepath", format="mp3"
)
model_dropdown = gr.Dropdown(
choices=WHISPER_MODELS,
value=DEFAULT_MODEL,
label="Select Whisper Model",
)
language_dropdown = gr.Dropdown(
choices=["Auto-detect"] + AVAILABLE_LANGUAGES,
value="Auto-detect",
label="Language (optional)",
)
transcribe_btn = gr.Button("Transcribe", variant="primary")
with gr.Column():
# Output components
output_text = gr.Textbox(label="Transcription", lines=10, max_lines=20)
detected_language = gr.Textbox(
label="Detected Language", interactive=False
)
# Set up the event handler
transcribe_btn.click(
fn=transcribe_audio,
inputs=[audio_input, model_dropdown, language_dropdown],
outputs=[output_text, detected_language],
)
# Add some helpful information
gr.Markdown(
f"""
### Tips:
- For better accuracy, use larger models (medium, large)
- Processing time increases with model size
- GPU is recommended for faster processing
- Maximum audio duration is {MAX_DURATION // 60} minutes
"""
)
return app
if __name__ == "__main__":
app = create_interface()
app.launch(share=SHARE, server_name=SERVER_NAME, server_port=SERVER_PORT)