mirror of
https://github.com/tcsenpai/youlama.git
synced 2025-06-06 19:25:39 +00:00
330 lines
13 KiB
Python
330 lines
13 KiB
Python
import os
|
|
import gradio as gr
|
|
from faster_whisper import WhisperModel
|
|
import torch
|
|
import configparser
|
|
from typing import List, Tuple, Optional
|
|
import youtube_handler as yt
|
|
from ollama_handler import OllamaHandler
|
|
|
|
|
|
def load_config() -> configparser.ConfigParser:
|
|
"""Load configuration from config.ini file."""
|
|
config = configparser.ConfigParser()
|
|
config_path = os.path.join(os.path.dirname(__file__), "config.ini")
|
|
config.read(config_path)
|
|
return config
|
|
|
|
|
|
# Load configuration
|
|
config = load_config()
|
|
|
|
# Whisper configuration
|
|
DEFAULT_MODEL = config["whisper"]["default_model"]
|
|
DEVICE = config["whisper"]["device"] if torch.cuda.is_available() else "cpu"
|
|
COMPUTE_TYPE = config["whisper"]["compute_type"] if DEVICE == "cuda" else "float32"
|
|
BEAM_SIZE = config["whisper"].getint("beam_size")
|
|
VAD_FILTER = config["whisper"].getboolean("vad_filter")
|
|
|
|
# App configuration
|
|
MAX_DURATION = config["app"].getint("max_duration")
|
|
SERVER_NAME = config["app"]["server_name"]
|
|
SERVER_PORT = config["app"].getint("server_port")
|
|
SHARE = config["app"].getboolean("share")
|
|
|
|
# Available models and languages
|
|
WHISPER_MODELS = config["models"]["available_models"].split(",")
|
|
AVAILABLE_LANGUAGES = config["languages"]["available_languages"].split(",")
|
|
|
|
# Initialize Ollama handler
|
|
ollama = OllamaHandler()
|
|
OLLAMA_AVAILABLE = ollama.is_available()
|
|
OLLAMA_MODELS = ollama.get_available_models() if OLLAMA_AVAILABLE else []
|
|
|
|
|
|
def load_model(model_name: str) -> WhisperModel:
|
|
"""Load the Whisper model with the specified configuration."""
|
|
return WhisperModel(model_name, device=DEVICE, compute_type=COMPUTE_TYPE)
|
|
|
|
|
|
def transcribe_audio(
|
|
audio_file: str,
|
|
model_name: str,
|
|
language: str = None,
|
|
summarize: bool = False,
|
|
ollama_model: str = None,
|
|
) -> tuple[str, str, Optional[str]]:
|
|
"""Transcribe audio using the selected Whisper model."""
|
|
try:
|
|
# Load the model
|
|
model = load_model(model_name)
|
|
|
|
# Transcribe the audio
|
|
segments, info = model.transcribe(
|
|
audio_file,
|
|
language=language if language != "Auto-detect" else None,
|
|
beam_size=BEAM_SIZE,
|
|
vad_filter=VAD_FILTER,
|
|
)
|
|
|
|
# Combine all segments into one text
|
|
full_text = " ".join([segment.text for segment in segments])
|
|
|
|
# Generate summary if requested
|
|
summary = None
|
|
if summarize and OLLAMA_AVAILABLE:
|
|
summary = ollama.summarize(full_text, ollama_model)
|
|
|
|
return full_text, info.language, summary
|
|
except Exception as e:
|
|
return f"Error during transcription: {str(e)}", None, None
|
|
|
|
|
|
def process_youtube_url(
|
|
url: str,
|
|
model_name: str,
|
|
language: str = None,
|
|
summarize: bool = False,
|
|
ollama_model: str = None,
|
|
) -> Tuple[str, str, str, Optional[str]]:
|
|
"""Process a YouTube URL and return transcription or subtitles."""
|
|
try:
|
|
# First try to get available subtitles
|
|
available_subs = yt.get_available_subtitles(url)
|
|
|
|
if available_subs:
|
|
# Try to download English subtitles first, then fall back to any available
|
|
subtitle_path = yt.download_subtitles(url, "en")
|
|
if not subtitle_path:
|
|
subtitle_path = yt.download_subtitles(url, available_subs[0])
|
|
|
|
if subtitle_path:
|
|
with open(subtitle_path, "r", encoding="utf-8") as f:
|
|
text = f.read()
|
|
summary = None
|
|
if summarize and OLLAMA_AVAILABLE:
|
|
summary = ollama.summarize(text, ollama_model)
|
|
return text, "en", "Subtitles", summary
|
|
|
|
# If no subtitles available, download and transcribe
|
|
audio_path, video_title = yt.download_video(url)
|
|
transcription, detected_lang, summary = transcribe_audio(
|
|
audio_path, model_name, language, summarize, ollama_model
|
|
)
|
|
|
|
# Clean up the temporary audio file
|
|
try:
|
|
os.remove(audio_path)
|
|
except:
|
|
pass
|
|
|
|
return transcription, detected_lang, "Transcription", summary
|
|
|
|
except Exception as e:
|
|
return f"Error processing YouTube video: {str(e)}", None, "Error", None
|
|
|
|
|
|
def create_interface():
|
|
"""Create and return the Gradio interface."""
|
|
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
gr.Markdown("# 🎙️ Audio/Video Transcription with Whisper")
|
|
|
|
with gr.Tabs() as tabs:
|
|
with gr.TabItem("Local File"):
|
|
gr.Markdown(
|
|
"Upload an audio or video file to transcribe it using Whisper AI."
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
# Input components
|
|
audio_input = gr.Audio(
|
|
label="Upload Audio/Video", type="filepath", format="mp3"
|
|
)
|
|
model_dropdown = gr.Dropdown(
|
|
choices=WHISPER_MODELS,
|
|
value=DEFAULT_MODEL,
|
|
label="Select Whisper Model",
|
|
)
|
|
language_dropdown = gr.Dropdown(
|
|
choices=["Auto-detect"] + AVAILABLE_LANGUAGES,
|
|
value="Auto-detect",
|
|
label="Language (optional)",
|
|
)
|
|
if OLLAMA_AVAILABLE:
|
|
with gr.Group():
|
|
summarize_checkbox = gr.Checkbox(
|
|
label="Generate Summary", value=False
|
|
)
|
|
ollama_model_dropdown = gr.Dropdown(
|
|
choices=OLLAMA_MODELS,
|
|
value=OLLAMA_MODELS[0] if OLLAMA_MODELS else None,
|
|
label="Ollama Model",
|
|
visible=False,
|
|
)
|
|
summarize_checkbox.change(
|
|
fn=lambda x: gr.Dropdown.update(visible=x),
|
|
inputs=[summarize_checkbox],
|
|
outputs=[ollama_model_dropdown],
|
|
)
|
|
transcribe_btn = gr.Button("Transcribe", variant="primary")
|
|
|
|
with gr.Column():
|
|
# Output components
|
|
output_text = gr.Textbox(
|
|
label="Transcription", lines=10, max_lines=20
|
|
)
|
|
detected_language = gr.Textbox(
|
|
label="Detected Language", interactive=False
|
|
)
|
|
if OLLAMA_AVAILABLE:
|
|
summary_text = gr.Textbox(
|
|
label="Summary", lines=5, max_lines=10, visible=False
|
|
)
|
|
|
|
# Set up the event handler
|
|
def transcribe_with_summary(
|
|
audio, model, lang, summarize, ollama_model
|
|
):
|
|
result = transcribe_audio(
|
|
audio, model, lang, summarize, ollama_model
|
|
)
|
|
if len(result) == 3:
|
|
text, lang, summary = result
|
|
return text, lang, summary if summary else ""
|
|
return result[0], result[1], ""
|
|
|
|
transcribe_btn.click(
|
|
fn=transcribe_with_summary,
|
|
inputs=[
|
|
audio_input,
|
|
model_dropdown,
|
|
language_dropdown,
|
|
(
|
|
summarize_checkbox
|
|
if OLLAMA_AVAILABLE
|
|
else gr.Checkbox(value=False)
|
|
),
|
|
(
|
|
ollama_model_dropdown
|
|
if OLLAMA_AVAILABLE
|
|
else gr.Dropdown(value=None)
|
|
),
|
|
],
|
|
outputs=[
|
|
output_text,
|
|
detected_language,
|
|
summary_text if OLLAMA_AVAILABLE else gr.Textbox(),
|
|
],
|
|
)
|
|
|
|
with gr.TabItem("YouTube"):
|
|
gr.Markdown(
|
|
"Enter a YouTube URL to transcribe the video or extract available subtitles."
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
# YouTube input components
|
|
youtube_url = gr.Textbox(
|
|
label="YouTube URL",
|
|
placeholder="Enter YouTube URL (youtube.com, youtu.be, or invidious)",
|
|
)
|
|
yt_model_dropdown = gr.Dropdown(
|
|
choices=WHISPER_MODELS,
|
|
value=DEFAULT_MODEL,
|
|
label="Select Whisper Model",
|
|
)
|
|
yt_language_dropdown = gr.Dropdown(
|
|
choices=["Auto-detect"] + AVAILABLE_LANGUAGES,
|
|
value="Auto-detect",
|
|
label="Language (optional)",
|
|
)
|
|
if OLLAMA_AVAILABLE:
|
|
with gr.Group():
|
|
yt_summarize_checkbox = gr.Checkbox(
|
|
label="Generate Summary", value=False
|
|
)
|
|
yt_ollama_model_dropdown = gr.Dropdown(
|
|
choices=OLLAMA_MODELS,
|
|
value=OLLAMA_MODELS[0] if OLLAMA_MODELS else None,
|
|
label="Ollama Model",
|
|
visible=False,
|
|
)
|
|
yt_summarize_checkbox.change(
|
|
fn=lambda x: gr.Dropdown.update(visible=x),
|
|
inputs=[yt_summarize_checkbox],
|
|
outputs=[yt_ollama_model_dropdown],
|
|
)
|
|
yt_process_btn = gr.Button("Process Video", variant="primary")
|
|
|
|
with gr.Column():
|
|
# YouTube output components
|
|
yt_output_text = gr.Textbox(
|
|
label="Result", lines=10, max_lines=20
|
|
)
|
|
yt_detected_language = gr.Textbox(
|
|
label="Detected Language", interactive=False
|
|
)
|
|
yt_source = gr.Textbox(label="Source", interactive=False)
|
|
if OLLAMA_AVAILABLE:
|
|
yt_summary_text = gr.Textbox(
|
|
label="Summary", lines=5, max_lines=10, visible=False
|
|
)
|
|
|
|
# Set up the event handler
|
|
def process_yt_with_summary(url, model, lang, summarize, ollama_model):
|
|
result = process_youtube_url(
|
|
url, model, lang, summarize, ollama_model
|
|
)
|
|
if len(result) == 4:
|
|
text, lang, source, summary = result
|
|
return text, lang, source, summary if summary else ""
|
|
return result[0], result[1], result[2], ""
|
|
|
|
yt_process_btn.click(
|
|
fn=process_yt_with_summary,
|
|
inputs=[
|
|
youtube_url,
|
|
yt_model_dropdown,
|
|
yt_language_dropdown,
|
|
(
|
|
yt_summarize_checkbox
|
|
if OLLAMA_AVAILABLE
|
|
else gr.Checkbox(value=False)
|
|
),
|
|
(
|
|
yt_ollama_model_dropdown
|
|
if OLLAMA_AVAILABLE
|
|
else gr.Dropdown(value=None)
|
|
),
|
|
],
|
|
outputs=[
|
|
yt_output_text,
|
|
yt_detected_language,
|
|
yt_source,
|
|
yt_summary_text if OLLAMA_AVAILABLE else gr.Textbox(),
|
|
],
|
|
)
|
|
|
|
# Add some helpful information
|
|
gr.Markdown(
|
|
f"""
|
|
### Tips:
|
|
- For better accuracy, use larger models (medium, large)
|
|
- Processing time increases with model size
|
|
- GPU is recommended for faster processing
|
|
- Maximum audio duration is {MAX_DURATION // 60} minutes
|
|
- YouTube videos will first try to use available subtitles
|
|
- If no subtitles are available, the video will be transcribed
|
|
{"- Ollama summarization is available for both local files and YouTube videos" if OLLAMA_AVAILABLE else ""}
|
|
"""
|
|
)
|
|
|
|
return app
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app = create_interface()
|
|
app.launch(share=SHARE, server_name=SERVER_NAME, server_port=SERVER_PORT)
|