mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
memory allocation + graph problem in verify
This commit is contained in:
parent
32b9ee5369
commit
6f51009ccd
@ -120,7 +120,7 @@ def verify(img1_path, img2_path=''
|
|||||||
if bulkProcess == True:
|
if bulkProcess == True:
|
||||||
resp_objects.append(resp_obj)
|
resp_objects.append(resp_obj)
|
||||||
else:
|
else:
|
||||||
K.clear_session()
|
#K.clear_session()
|
||||||
return resp_obj
|
return resp_obj
|
||||||
#----------------------
|
#----------------------
|
||||||
|
|
||||||
@ -318,6 +318,8 @@ def stream(db_path, model_name ='VGG-Face', distance_metric = 'cosine', enable_f
|
|||||||
|
|
||||||
#---------------------------
|
#---------------------------
|
||||||
|
|
||||||
|
functions.allocateMemory()
|
||||||
|
|
||||||
functions.initializeFolder()
|
functions.initializeFolder()
|
||||||
|
|
||||||
#---------------------------
|
#---------------------------
|
||||||
|
@ -12,6 +12,10 @@ import math
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
import copy
|
import copy
|
||||||
import base64
|
import base64
|
||||||
|
import multiprocessing
|
||||||
|
import subprocess
|
||||||
|
import tensorflow as tf
|
||||||
|
import keras
|
||||||
|
|
||||||
def loadBase64Img(uri):
|
def loadBase64Img(uri):
|
||||||
encoded_data = uri.split(',')[1]
|
encoded_data = uri.split(',')[1]
|
||||||
@ -291,3 +295,91 @@ def detectFace(img, target_size=(224, 224), grayscale = False):
|
|||||||
return img_pixels
|
return img_pixels
|
||||||
else:
|
else:
|
||||||
raise ValueError("Face could not be detected in ", img,". Please confirm that the picture is a face photo.")
|
raise ValueError("Face could not be detected in ", img,". Please confirm that the picture is a face photo.")
|
||||||
|
|
||||||
|
def allocateMemory():
|
||||||
|
|
||||||
|
#find allocated memories
|
||||||
|
gpu_indexes = []
|
||||||
|
memory_usage_percentages = []; available_memories = []; total_memories = []; utilizations = []
|
||||||
|
power_usages = []; power_capacities = []
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = subprocess.check_output(['nvidia-smi'])
|
||||||
|
|
||||||
|
dashboard = result.decode("utf-8").split("=|")
|
||||||
|
|
||||||
|
dashboard = dashboard[1].split("\n")
|
||||||
|
|
||||||
|
gpu_idx = 0
|
||||||
|
for line in dashboard:
|
||||||
|
if ("MiB" in line):
|
||||||
|
power_info = line.split("|")[1]
|
||||||
|
power_capacity = int(power_info.split("/")[-1].replace("W", ""))
|
||||||
|
power_usage = int((power_info.split("/")[-2]).strip().split(" ")[-1].replace("W", ""))
|
||||||
|
|
||||||
|
power_usages.append(power_usage)
|
||||||
|
power_capacities.append(power_capacity)
|
||||||
|
|
||||||
|
#----------------------------
|
||||||
|
|
||||||
|
memory_info = line.split("|")[2].replace("MiB","").split("/")
|
||||||
|
utilization_info = int(line.split("|")[3].split("%")[0])
|
||||||
|
|
||||||
|
allocated = int(memory_info[0])
|
||||||
|
total_memory = int(memory_info[1])
|
||||||
|
available_memory = total_memory - allocated
|
||||||
|
|
||||||
|
total_memories.append(total_memory)
|
||||||
|
available_memories.append(available_memory)
|
||||||
|
memory_usage_percentages.append(round(100*int(allocated)/int(total_memory), 4))
|
||||||
|
utilizations.append(utilization_info)
|
||||||
|
gpu_indexes.append(gpu_idx)
|
||||||
|
|
||||||
|
gpu_idx = gpu_idx + 1
|
||||||
|
|
||||||
|
gpu_count = gpu_idx * 1
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
gpu_count = 0
|
||||||
|
#print(str(err))
|
||||||
|
|
||||||
|
#------------------------------
|
||||||
|
|
||||||
|
df = pd.DataFrame(gpu_indexes, columns = ["gpu_index"])
|
||||||
|
df["total_memories_in_mb"] = total_memories
|
||||||
|
df["available_memories_in_mb"] = available_memories
|
||||||
|
df["memory_usage_percentage"] = memory_usage_percentages
|
||||||
|
df["utilizations"] = utilizations
|
||||||
|
df["power_usages_in_watts"] = power_usages
|
||||||
|
df["power_capacities_in_watts"] = power_capacities
|
||||||
|
|
||||||
|
df = df.sort_values(by = ["available_memories_in_mb"], ascending = False).reset_index(drop = True)
|
||||||
|
|
||||||
|
#------------------------------
|
||||||
|
|
||||||
|
required_memory = 10000 #All deepface models require 9016 MiB
|
||||||
|
|
||||||
|
if df.shape[0] > 0: #has gpu
|
||||||
|
if df.iloc[0].available_memories_in_mb > required_memory:
|
||||||
|
my_gpu = str(int(df.iloc[0].gpu_index))
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = my_gpu
|
||||||
|
|
||||||
|
#------------------------------
|
||||||
|
#tf allocates all memory by default
|
||||||
|
#this block avoids greedy approach
|
||||||
|
|
||||||
|
config = tf.ConfigProto()
|
||||||
|
config.gpu_options.allow_growth = True
|
||||||
|
session = tf.Session(config=config)
|
||||||
|
keras.backend.set_session(session)
|
||||||
|
|
||||||
|
print("DeepFace will run on GPU (gpu_", my_gpu,")")
|
||||||
|
else:
|
||||||
|
#this case has gpu but no enough memory to allocate
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "" #run it on cpu
|
||||||
|
print("Even though the system has GPUs, there is no enough space in memory to allocate.")
|
||||||
|
print("DeepFace will run on CPU")
|
||||||
|
else:
|
||||||
|
print("DeepFace will run on CPU")
|
||||||
|
|
||||||
|
#------------------------------
|
||||||
|
Loading…
x
Reference in New Issue
Block a user