mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
Merge pull request #1025 from serengil/feat-task-1602-new-detector-interface
Feat task 1602 new detector interface
This commit is contained in:
commit
ee4ad41c2c
@ -423,7 +423,7 @@ def stream(
|
||||
|
||||
def extract_faces(
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: Tuple[int, int] = (224, 224),
|
||||
target_size: Optional[Tuple[int, int]] = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
|
@ -1,6 +1,7 @@
|
||||
from typing import Any, List
|
||||
from typing import Any, List, Tuple
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector, DetectedFace
|
||||
from deepface.modules import detection
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.detectors import (
|
||||
FastMtCnn,
|
||||
MediaPipe,
|
||||
@ -80,10 +81,101 @@ def detect_faces(
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
"""
|
||||
face_detector: Detector = build_model(detector_backend)
|
||||
|
||||
# validate expand percentage score
|
||||
if expand_percentage < 0:
|
||||
logger.warn(
|
||||
f"Expand percentage cannot be negative but you set it to {expand_percentage}."
|
||||
"Overwritten it to 0."
|
||||
)
|
||||
expand_percentage = 0
|
||||
return face_detector.detect_faces(img=img, align=align, expand_percentage=expand_percentage)
|
||||
|
||||
# find facial areas of given image
|
||||
facial_areas = face_detector.detect_faces(img=img)
|
||||
|
||||
results = []
|
||||
for facial_area in facial_areas:
|
||||
x = facial_area.x
|
||||
y = facial_area.y
|
||||
w = facial_area.w
|
||||
h = facial_area.h
|
||||
left_eye = facial_area.left_eye
|
||||
right_eye = facial_area.right_eye
|
||||
confidence = facial_area.confidence
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * 2 * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * 2 * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# extract detected face unaligned
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
# aligning detected face causes a lot of black pixels
|
||||
# if align is True:
|
||||
# detected_face, _ = detection.align_face(
|
||||
# img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
# )
|
||||
|
||||
# align original image, then find projection of detected face area after alignment
|
||||
if align is True: # and left_eye is not None and right_eye is not None:
|
||||
aligned_img, angle = detection.align_face(
|
||||
img=img, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
x1_new, y1_new, x2_new, y2_new = rotate_facial_area(
|
||||
facial_area=(x2, y2, x2 + w2, y2 + h2), angle=angle, direction=1, size=img.shape
|
||||
)
|
||||
detected_face = aligned_img[int(y1_new) : int(y2_new), int(x1_new) : int(x2_new)]
|
||||
|
||||
result = DetectedFace(
|
||||
img=detected_face,
|
||||
facial_area=FacialAreaRegion(
|
||||
x=x, y=y, h=h, w=w, confidence=confidence, left_eye=left_eye, right_eye=right_eye
|
||||
),
|
||||
confidence=confidence,
|
||||
)
|
||||
results.append(result)
|
||||
return results
|
||||
|
||||
|
||||
def rotate_facial_area(
|
||||
facial_area: Tuple[int, int, int, int], angle: float, direction: int, size: Tuple[int, int]
|
||||
) -> Tuple[int, int, int, int]:
|
||||
"""
|
||||
Rotate the facial area around its center.
|
||||
Inspried from the work of @UmutDeniz26 - github.com/serengil/retinaface/pull/80
|
||||
|
||||
Args:
|
||||
facial_area (tuple of int): Representing the (x1, y1, x2, y2) of the facial area.
|
||||
x2 is equal to x1 + w1, and y2 is equal to y1 + h1
|
||||
angle (float): Angle of rotation in degrees.
|
||||
direction (int): Direction of rotation (-1 for clockwise, 1 for counterclockwise).
|
||||
size (tuple of int): Tuple representing the size of the image (width, height).
|
||||
|
||||
Returns:
|
||||
rotated_coordinates (tuple of int): Representing the new coordinates
|
||||
(x1, y1, x2, y2) or (x1, y1, x1+w1, y1+h1) of the rotated facial area.
|
||||
"""
|
||||
# Angle in radians
|
||||
angle = angle * np.pi / 180
|
||||
|
||||
# Translate the facial area to the center of the image
|
||||
x = (facial_area[0] + facial_area[2]) / 2 - size[1] / 2
|
||||
y = (facial_area[1] + facial_area[3]) / 2 - size[0] / 2
|
||||
|
||||
# Rotate the facial area
|
||||
x_new = x * np.cos(angle) + y * direction * np.sin(angle)
|
||||
y_new = -x * direction * np.sin(angle) + y * np.cos(angle)
|
||||
|
||||
# Translate the facial area back to the original position
|
||||
x_new = x_new + size[1] / 2
|
||||
y_new = y_new + size[0] / 2
|
||||
|
||||
# Calculate the new facial area
|
||||
x1 = x_new - (facial_area[2] - facial_area[0]) / 2
|
||||
y1 = y_new - (facial_area[3] - facial_area[1]) / 2
|
||||
x2 = x_new + (facial_area[2] - facial_area[0]) / 2
|
||||
y2 = y_new + (facial_area[3] - facial_area[1]) / 2
|
||||
|
||||
return (int(x1), int(y1), int(x2), int(y2))
|
||||
|
@ -4,7 +4,7 @@ import bz2
|
||||
import gdown
|
||||
import numpy as np
|
||||
from deepface.commons import folder_utils
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="detectors.DlibWrapper")
|
||||
@ -56,50 +56,18 @@ class DlibClient(Detector):
|
||||
detector["sp"] = sp
|
||||
return detector
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with dlib
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
# this is not a must dependency. do not import it in the global level.
|
||||
try:
|
||||
import dlib
|
||||
except ModuleNotFoundError as e:
|
||||
raise ImportError(
|
||||
"Dlib is an optional detector, ensure the library is installed."
|
||||
"Please install using 'pip install dlib' "
|
||||
) from e
|
||||
|
||||
if expand_percentage != 0:
|
||||
logger.warn(
|
||||
f"You set expand_percentage argument to {expand_percentage},"
|
||||
"but dlib hog handles detection by itself"
|
||||
)
|
||||
|
||||
resp = []
|
||||
|
||||
sp = self.model["sp"]
|
||||
|
||||
detected_face = None
|
||||
|
||||
face_detector = self.model["face_detector"]
|
||||
|
||||
# note that, by design, dlib's fhog face detector scores are >0 but not capped at 1
|
||||
@ -107,30 +75,32 @@ class DlibClient(Detector):
|
||||
|
||||
if len(detections) > 0:
|
||||
|
||||
for idx, d in enumerate(detections):
|
||||
left = d.left()
|
||||
right = d.right()
|
||||
top = d.top()
|
||||
bottom = d.bottom()
|
||||
for idx, detection in enumerate(detections):
|
||||
left = detection.left()
|
||||
right = detection.right()
|
||||
top = detection.top()
|
||||
bottom = detection.bottom()
|
||||
|
||||
y = int(max(0, top))
|
||||
h = int(min(bottom, img.shape[0]) - y)
|
||||
x = int(max(0, left))
|
||||
w = int(min(right, img.shape[1]) - x)
|
||||
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
shape = self.model["sp"](img, detection)
|
||||
left_eye = (shape.part(2).x, shape.part(2).y)
|
||||
right_eye = (shape.part(0).x, shape.part(0).y)
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
confidence = scores[idx]
|
||||
|
||||
if align:
|
||||
img_shape = sp(img, detections[idx])
|
||||
detected_face = dlib.get_face_chip(img, img_shape, size=detected_face.shape[0])
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face, facial_area=img_region, confidence=confidence
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x,
|
||||
y=y,
|
||||
w=w,
|
||||
h=h,
|
||||
left_eye=left_eye,
|
||||
right_eye=right_eye,
|
||||
confidence=confidence,
|
||||
)
|
||||
|
||||
resp.append(detected_face_obj)
|
||||
resp.append(facial_area)
|
||||
|
||||
return resp
|
||||
|
@ -1,8 +1,7 @@
|
||||
from typing import Any, Union, List
|
||||
import cv2
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.modules import detection
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
|
||||
# Link -> https://github.com/timesler/facenet-pytorch
|
||||
# Examples https://www.kaggle.com/timesler/guide-to-mtcnn-in-facenet-pytorch
|
||||
@ -12,33 +11,18 @@ class FastMtCnnClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = self.build_model()
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with mtcnn
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
resp = []
|
||||
|
||||
detected_face = None
|
||||
|
||||
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # mtcnn expects RGB but OpenCV read BGR
|
||||
detections = self.model.detect(
|
||||
img_rgb, landmarks=True
|
||||
@ -47,31 +31,20 @@ class FastMtCnnClient(Detector):
|
||||
|
||||
for current_detection in zip(*detections):
|
||||
x, y, w, h = xyxy_to_xywh(current_detection[0])
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
confidence = current_detection[1]
|
||||
left_eye = current_detection[2][0]
|
||||
right_eye = current_detection[2][1]
|
||||
|
||||
if align:
|
||||
left_eye = current_detection[2][0]
|
||||
right_eye = current_detection[2][1]
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face, facial_area=img_region, confidence=confidence
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x,
|
||||
y=y,
|
||||
w=w,
|
||||
h=h,
|
||||
left_eye=left_eye,
|
||||
right_eye=right_eye,
|
||||
confidence=confidence,
|
||||
)
|
||||
|
||||
resp.append(detected_face_obj)
|
||||
resp.append(facial_area)
|
||||
|
||||
return resp
|
||||
|
||||
|
@ -1,7 +1,6 @@
|
||||
from typing import Any, List
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.modules import detection
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
|
||||
# Link - https://google.github.io/mediapipe/solutions/face_detection
|
||||
|
||||
@ -29,28 +28,15 @@ class MediaPipeClient(Detector):
|
||||
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.7)
|
||||
return face_detection
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with mediapipe
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -75,7 +61,6 @@ class MediaPipeClient(Detector):
|
||||
y = int(bounding_box.ymin * img_height)
|
||||
h = int(bounding_box.height * img_height)
|
||||
|
||||
# Extract landmarks
|
||||
left_eye = (int(landmarks[0].x * img_width), int(landmarks[0].y * img_height))
|
||||
right_eye = (int(landmarks[1].x * img_width), int(landmarks[1].y * img_height))
|
||||
# nose = (int(landmarks[2].x * img_width), int(landmarks[2].y * img_height))
|
||||
@ -83,30 +68,9 @@ class MediaPipeClient(Detector):
|
||||
# right_ear = (int(landmarks[4].x * img_width), int(landmarks[4].y * img_height))
|
||||
# left_ear = (int(landmarks[5].x * img_width), int(landmarks[5].y * img_height))
|
||||
|
||||
if x > 0 and y > 0:
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
|
||||
if align:
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face,
|
||||
facial_area=img_region,
|
||||
confidence=confidence,
|
||||
)
|
||||
|
||||
resp.append(detected_face_obj)
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x, y=y, w=w, h=h, left_eye=left_eye, right_eye=right_eye, confidence=confidence
|
||||
)
|
||||
resp.append(facial_area)
|
||||
|
||||
return resp
|
||||
|
@ -1,8 +1,7 @@
|
||||
from typing import List
|
||||
import numpy as np
|
||||
from mtcnn import MTCNN
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.modules import detection
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class MtCnnClient(Detector):
|
||||
@ -13,34 +12,19 @@ class MtCnnClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = MTCNN()
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with mtcnn
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
|
||||
resp = []
|
||||
|
||||
detected_face = None
|
||||
|
||||
# mtcnn expects RGB but OpenCV read BGR
|
||||
# img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img_rgb = img[:, :, ::-1]
|
||||
@ -50,31 +34,20 @@ class MtCnnClient(Detector):
|
||||
|
||||
for current_detection in detections:
|
||||
x, y, w, h = current_detection["box"]
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
confidence = current_detection["confidence"]
|
||||
left_eye = current_detection["keypoints"]["left_eye"]
|
||||
right_eye = current_detection["keypoints"]["right_eye"]
|
||||
|
||||
if align:
|
||||
keypoints = current_detection["keypoints"]
|
||||
left_eye = keypoints["left_eye"]
|
||||
right_eye = keypoints["right_eye"]
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face, facial_area=img_region, confidence=confidence
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x,
|
||||
y=y,
|
||||
w=w,
|
||||
h=h,
|
||||
left_eye=left_eye,
|
||||
right_eye=right_eye,
|
||||
confidence=confidence,
|
||||
)
|
||||
|
||||
resp.append(detected_face_obj)
|
||||
resp.append(facial_area)
|
||||
|
||||
return resp
|
||||
|
@ -2,8 +2,7 @@ import os
|
||||
from typing import Any, List
|
||||
import cv2
|
||||
import numpy as np
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.modules import detection
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
|
||||
|
||||
class OpenCvClient(Detector):
|
||||
@ -25,28 +24,15 @@ class OpenCvClient(Detector):
|
||||
detector["eye_detector"] = self.__build_cascade("haarcascade_eye")
|
||||
return detector
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with opencv
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -65,27 +51,18 @@ class OpenCvClient(Detector):
|
||||
|
||||
if len(faces) > 0:
|
||||
for (x, y, w, h), confidence in zip(faces, scores):
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
if align:
|
||||
left_eye, right_eye = self.find_eyes(img=detected_face)
|
||||
detected_face = detection.align_face(detected_face, left_eye, right_eye)
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face,
|
||||
facial_area=FacialAreaRegion(x, y, w, h),
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
left_eye, right_eye = self.find_eyes(img=detected_face)
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x,
|
||||
y=y,
|
||||
w=w,
|
||||
h=h,
|
||||
left_eye=left_eye,
|
||||
right_eye=right_eye,
|
||||
confidence=confidence,
|
||||
)
|
||||
|
||||
resp.append(detected_face_obj)
|
||||
resp.append(facial_area)
|
||||
|
||||
return resp
|
||||
|
||||
|
@ -1,36 +1,22 @@
|
||||
from typing import List
|
||||
import numpy as np
|
||||
from retinaface import RetinaFace as rf
|
||||
from retinaface.commons import postprocess
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
|
||||
# pylint: disable=too-few-public-methods
|
||||
class RetinaFaceClient(Detector):
|
||||
def __init__(self):
|
||||
self.model = rf.build_model()
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with retinaface
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -41,42 +27,33 @@ class RetinaFaceClient(Detector):
|
||||
|
||||
for face_idx in obj.keys():
|
||||
identity = obj[face_idx]
|
||||
facial_area = identity["facial_area"]
|
||||
detection = identity["facial_area"]
|
||||
|
||||
y = detection[1]
|
||||
h = detection[3] - y
|
||||
x = detection[0]
|
||||
w = detection[2] - x
|
||||
|
||||
# notice that these must be inverse for retinaface
|
||||
left_eye = identity["landmarks"]["right_eye"]
|
||||
right_eye = identity["landmarks"]["left_eye"]
|
||||
|
||||
# eyes are list of float, need to cast them tuple of int
|
||||
left_eye = tuple(int(i) for i in left_eye)
|
||||
right_eye = tuple(int(i) for i in right_eye)
|
||||
|
||||
y = facial_area[1]
|
||||
h = facial_area[3] - y
|
||||
x = facial_area[0]
|
||||
w = facial_area[2] - x
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
confidence = identity["score"]
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
if align:
|
||||
landmarks = identity["landmarks"]
|
||||
left_eye = landmarks["left_eye"]
|
||||
right_eye = landmarks["right_eye"]
|
||||
nose = landmarks["nose"]
|
||||
# mouth_right = landmarks["mouth_right"]
|
||||
# mouth_left = landmarks["mouth_left"]
|
||||
|
||||
detected_face = postprocess.alignment_procedure(
|
||||
detected_face, right_eye, left_eye, nose
|
||||
)
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face,
|
||||
facial_area=img_region,
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x,
|
||||
y=y,
|
||||
w=w,
|
||||
h=h,
|
||||
left_eye=left_eye,
|
||||
right_eye=right_eye,
|
||||
confidence=confidence,
|
||||
)
|
||||
|
||||
resp.append(detected_face_obj)
|
||||
resp.append(facial_area)
|
||||
|
||||
return resp
|
||||
|
@ -6,8 +6,7 @@ import pandas as pd
|
||||
import numpy as np
|
||||
from deepface.detectors import OpenCv
|
||||
from deepface.commons import folder_utils
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.modules import detection
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="detectors.SsdWrapper")
|
||||
@ -71,29 +70,18 @@ class SsdClient(Detector):
|
||||
|
||||
return detector
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with ssd
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
opencv_module: OpenCv.OpenCvClient = self.model["opencv_module"]
|
||||
|
||||
resp = []
|
||||
|
||||
detected_face = None
|
||||
@ -133,37 +121,26 @@ class SsdClient(Detector):
|
||||
right = instance["right"]
|
||||
bottom = instance["bottom"]
|
||||
top = instance["top"]
|
||||
confidence = instance["confidence"]
|
||||
|
||||
x = int(left * aspect_ratio_x)
|
||||
y = int(top * aspect_ratio_y)
|
||||
w = int(right * aspect_ratio_x) - int(left * aspect_ratio_x)
|
||||
h = int(bottom * aspect_ratio_y) - int(top * aspect_ratio_y)
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
face_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
left_eye, right_eye = opencv_module.find_eyes(detected_face)
|
||||
|
||||
confidence = instance["confidence"]
|
||||
|
||||
if align:
|
||||
opencv_module: OpenCv.OpenCvClient = self.model["opencv_module"]
|
||||
left_eye, right_eye = opencv_module.find_eyes(detected_face)
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||
)
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face,
|
||||
facial_area=face_region,
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x,
|
||||
y=y,
|
||||
w=w,
|
||||
h=h,
|
||||
left_eye=left_eye,
|
||||
right_eye=right_eye,
|
||||
confidence=confidence,
|
||||
)
|
||||
resp.append(facial_area)
|
||||
|
||||
resp.append(detected_face_obj)
|
||||
return resp
|
||||
|
@ -2,8 +2,7 @@ import os
|
||||
from typing import Any, List
|
||||
import numpy as np
|
||||
import gdown
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.modules import detection
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
from deepface.commons import folder_utils
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
@ -50,28 +49,15 @@ class YoloClient(Detector):
|
||||
# Return face_detector
|
||||
return YOLO(weight_path)
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = False, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with yolo
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
resp = []
|
||||
|
||||
@ -84,36 +70,25 @@ class YoloClient(Detector):
|
||||
x, y, w, h = result.boxes.xywh.tolist()[0]
|
||||
confidence = result.boxes.conf.tolist()[0]
|
||||
|
||||
# left_eye_conf = result.keypoints.conf[0][0]
|
||||
# right_eye_conf = result.keypoints.conf[0][1]
|
||||
left_eye = result.keypoints.xy[0][0].tolist()
|
||||
right_eye = result.keypoints.xy[0][1].tolist()
|
||||
|
||||
# eyes are list of float, need to cast them tuple of int
|
||||
left_eye = tuple(int(i) for i in left_eye)
|
||||
right_eye = tuple(int(i) for i in right_eye)
|
||||
|
||||
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
|
||||
region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
if align:
|
||||
# Tuple of x,y and confidence for left eye
|
||||
left_eye = result.keypoints.xy[0][0], result.keypoints.conf[0][0]
|
||||
# Tuple of x,y and confidence for right eye
|
||||
right_eye = result.keypoints.xy[0][1], result.keypoints.conf[0][1]
|
||||
|
||||
# Check the landmarks confidence before alignment
|
||||
if (
|
||||
left_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
||||
and right_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
||||
):
|
||||
detected_face = detection.align_face(
|
||||
img=detected_face, left_eye=left_eye[0].cpu(), right_eye=right_eye[0].cpu()
|
||||
)
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face, facial_area=region, confidence=confidence
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x,
|
||||
y=y,
|
||||
w=w,
|
||||
h=h,
|
||||
left_eye=left_eye,
|
||||
right_eye=right_eye,
|
||||
confidence=confidence,
|
||||
)
|
||||
resp.append(detected_face_obj)
|
||||
resp.append(facial_area)
|
||||
|
||||
return resp
|
||||
|
@ -4,8 +4,7 @@ import cv2
|
||||
import numpy as np
|
||||
import gdown
|
||||
from deepface.commons import folder_utils
|
||||
from deepface.models.Detector import Detector, DetectedFace, FacialAreaRegion
|
||||
from deepface.modules import detection
|
||||
from deepface.models.Detector import Detector, FacialAreaRegion
|
||||
from deepface.commons.logger import Logger
|
||||
|
||||
logger = Logger(module="detectors.YunetWrapper")
|
||||
@ -49,34 +48,20 @@ class YuNetClient(Detector):
|
||||
) from err
|
||||
return face_detector
|
||||
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List[DetectedFace]:
|
||||
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
||||
"""
|
||||
Detect and align face with yunet
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
"""
|
||||
# FaceDetector.detect_faces does not support score_threshold parameter.
|
||||
# We can set it via environment variable.
|
||||
score_threshold = float(os.environ.get("yunet_score_threshold", "0.9"))
|
||||
resp = []
|
||||
detected_face = None
|
||||
faces = []
|
||||
height, width = img.shape[0], img.shape[1]
|
||||
# resize image if it is too large (Yunet fails to detect faces on large input sometimes)
|
||||
@ -108,6 +93,8 @@ class YuNetClient(Detector):
|
||||
left eye, nose tip, the right corner and left corner of the mouth respectively.
|
||||
"""
|
||||
(x, y, w, h, x_re, y_re, x_le, y_le) = list(map(int, face[:8]))
|
||||
left_eye = (x_re, y_re)
|
||||
right_eye = (x_le, y_le)
|
||||
|
||||
# Yunet returns negative coordinates if it thinks part of
|
||||
# the detected face is outside the frame.
|
||||
@ -123,24 +110,16 @@ class YuNetClient(Detector):
|
||||
int(x_le / r),
|
||||
int(y_le / r),
|
||||
)
|
||||
confidence = face[-1]
|
||||
confidence = f"{confidence:.2f}"
|
||||
confidence = float(face[-1])
|
||||
|
||||
# expand the facial area to be extracted and stay within img.shape limits
|
||||
x2 = max(0, x - int((w * expand_percentage) / 100)) # expand left
|
||||
y2 = max(0, y - int((h * expand_percentage) / 100)) # expand top
|
||||
w2 = min(img.shape[1], w + int((w * expand_percentage) / 100)) # expand right
|
||||
h2 = min(img.shape[0], h + int((h * expand_percentage) / 100)) # expand bottom
|
||||
|
||||
# detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||
detected_face = img[int(y2) : int(y2 + h2), int(x2) : int(x2 + w2)]
|
||||
|
||||
img_region = FacialAreaRegion(x=x, y=y, w=w, h=h)
|
||||
if align:
|
||||
detected_face = detection.align_face(detected_face, (x_re, y_re), (x_le, y_le))
|
||||
|
||||
detected_face_obj = DetectedFace(
|
||||
img=detected_face, facial_area=img_region, confidence=confidence
|
||||
facial_area = FacialAreaRegion(
|
||||
x=x,
|
||||
y=y,
|
||||
w=w,
|
||||
h=h,
|
||||
confidence=confidence,
|
||||
left_eye=left_eye,
|
||||
right_eye=right_eye,
|
||||
)
|
||||
resp.append(detected_face_obj)
|
||||
resp.append(facial_area)
|
||||
return resp
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import List
|
||||
from typing import List, Tuple, Optional
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
|
||||
@ -8,28 +8,19 @@ import numpy as np
|
||||
# pylint: disable=unnecessary-pass, too-few-public-methods
|
||||
class Detector(ABC):
|
||||
@abstractmethod
|
||||
def detect_faces(
|
||||
self, img: np.ndarray, align: bool = True, expand_percentage: int = 0
|
||||
) -> List["DetectedFace"]:
|
||||
def detect_faces(self, img: np.ndarray) -> List["FacialAreaRegion"]:
|
||||
"""
|
||||
Interface for detect and align face
|
||||
|
||||
Args:
|
||||
img (np.ndarray): pre-loaded image as numpy array
|
||||
|
||||
align (bool): flag to enable or disable alignment after detection (default is True)
|
||||
|
||||
expand_percentage (int): expand detected facial area with a percentage
|
||||
|
||||
Returns:
|
||||
results (List[Tuple[DetectedFace]): A list of DetectedFace objects
|
||||
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
||||
where each object contains:
|
||||
|
||||
- img (np.ndarray): The detected face as a NumPy array.
|
||||
|
||||
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
|
||||
|
||||
- confidence (float): The confidence score associated with the detected face.
|
||||
- facial_area (FacialAreaRegion): The facial area region represented
|
||||
as x, y, w, h, left_eye and right_eye
|
||||
"""
|
||||
pass
|
||||
|
||||
@ -39,12 +30,27 @@ class FacialAreaRegion:
|
||||
y: int
|
||||
w: int
|
||||
h: int
|
||||
left_eye: Tuple[int, int]
|
||||
right_eye: Tuple[int, int]
|
||||
confidence: float
|
||||
|
||||
def __init__(self, x: int, y: int, w: int, h: int):
|
||||
def __init__(
|
||||
self,
|
||||
x: int,
|
||||
y: int,
|
||||
w: int,
|
||||
h: int,
|
||||
left_eye: Optional[Tuple[int, int]] = None,
|
||||
right_eye: Optional[Tuple[int, int]] = None,
|
||||
confidence: Optional[float] = None,
|
||||
):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.w = w
|
||||
self.h = h
|
||||
self.left_eye = left_eye
|
||||
self.right_eye = right_eye
|
||||
self.confidence = confidence
|
||||
|
||||
|
||||
class DetectedFace:
|
||||
|
@ -1,5 +1,5 @@
|
||||
# built-in dependencies
|
||||
from typing import Any, Dict, List, Tuple, Union
|
||||
from typing import Any, Dict, List, Tuple, Union, Optional
|
||||
|
||||
# 3rd part dependencies
|
||||
import numpy as np
|
||||
@ -27,7 +27,7 @@ elif tf_major_version == 2:
|
||||
|
||||
def extract_faces(
|
||||
img_path: Union[str, np.ndarray],
|
||||
target_size: Tuple[int, int] = (224, 224),
|
||||
target_size: Optional[Tuple[int, int]] = (224, 224),
|
||||
detector_backend: str = "opencv",
|
||||
enforce_detection: bool = True,
|
||||
align: bool = True,
|
||||
@ -76,7 +76,7 @@ def extract_faces(
|
||||
# img might be path, base64 or numpy array. Convert it to numpy whatever it is.
|
||||
img, img_name = preprocessing.load_image(img_path)
|
||||
|
||||
base_region = FacialAreaRegion(x=0, y=0, w=img.shape[1], h=img.shape[0])
|
||||
base_region = FacialAreaRegion(x=0, y=0, w=img.shape[1], h=img.shape[0], confidence=0)
|
||||
|
||||
if detector_backend == "skip":
|
||||
face_objs = [DetectedFace(img=img, facial_area=base_region, confidence=0)]
|
||||
@ -108,7 +108,6 @@ def extract_faces(
|
||||
for face_obj in face_objs:
|
||||
current_img = face_obj.img
|
||||
current_region = face_obj.facial_area
|
||||
confidence = face_obj.confidence
|
||||
|
||||
if current_img.shape[0] == 0 or current_img.shape[1] == 0:
|
||||
continue
|
||||
@ -117,42 +116,43 @@ def extract_faces(
|
||||
current_img = cv2.cvtColor(current_img, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# resize and padding
|
||||
factor_0 = target_size[0] / current_img.shape[0]
|
||||
factor_1 = target_size[1] / current_img.shape[1]
|
||||
factor = min(factor_0, factor_1)
|
||||
if target_size is not None:
|
||||
factor_0 = target_size[0] / current_img.shape[0]
|
||||
factor_1 = target_size[1] / current_img.shape[1]
|
||||
factor = min(factor_0, factor_1)
|
||||
|
||||
dsize = (
|
||||
int(current_img.shape[1] * factor),
|
||||
int(current_img.shape[0] * factor),
|
||||
)
|
||||
current_img = cv2.resize(current_img, dsize)
|
||||
|
||||
diff_0 = target_size[0] - current_img.shape[0]
|
||||
diff_1 = target_size[1] - current_img.shape[1]
|
||||
if grayscale is False:
|
||||
# Put the base image in the middle of the padded image
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
(
|
||||
(diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2),
|
||||
(0, 0),
|
||||
),
|
||||
"constant",
|
||||
)
|
||||
else:
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
(
|
||||
(diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2),
|
||||
),
|
||||
"constant",
|
||||
dsize = (
|
||||
int(current_img.shape[1] * factor),
|
||||
int(current_img.shape[0] * factor),
|
||||
)
|
||||
current_img = cv2.resize(current_img, dsize)
|
||||
|
||||
# double check: if target image is not still the same size with target.
|
||||
if current_img.shape[0:2] != target_size:
|
||||
current_img = cv2.resize(current_img, target_size)
|
||||
diff_0 = target_size[0] - current_img.shape[0]
|
||||
diff_1 = target_size[1] - current_img.shape[1]
|
||||
if grayscale is False:
|
||||
# Put the base image in the middle of the padded image
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
(
|
||||
(diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2),
|
||||
(0, 0),
|
||||
),
|
||||
"constant",
|
||||
)
|
||||
else:
|
||||
current_img = np.pad(
|
||||
current_img,
|
||||
(
|
||||
(diff_0 // 2, diff_0 - diff_0 // 2),
|
||||
(diff_1 // 2, diff_1 - diff_1 // 2),
|
||||
),
|
||||
"constant",
|
||||
)
|
||||
|
||||
# double check: if target image is not still the same size with target.
|
||||
if current_img.shape[0:2] != target_size:
|
||||
current_img = cv2.resize(current_img, target_size)
|
||||
|
||||
# normalizing the image pixels
|
||||
# what this line doing? must?
|
||||
@ -171,14 +171,17 @@ def extract_faces(
|
||||
"y": int(current_region.y),
|
||||
"w": int(current_region.w),
|
||||
"h": int(current_region.h),
|
||||
"left_eye": current_region.left_eye,
|
||||
"right_eye": current_region.right_eye,
|
||||
},
|
||||
"confidence": confidence,
|
||||
"confidence": round(current_region.confidence, 2),
|
||||
}
|
||||
)
|
||||
|
||||
if len(resp_objs) == 0 and enforce_detection == True:
|
||||
raise ValueError(
|
||||
f"Detected face shape is {img.shape}. Consider to set enforce_detection arg to False."
|
||||
f"Exception while extracting faces from {img_name}."
|
||||
"Consider to set enforce_detection arg to False."
|
||||
)
|
||||
|
||||
return resp_objs
|
||||
@ -188,7 +191,7 @@ def align_face(
|
||||
img: np.ndarray,
|
||||
left_eye: Union[list, tuple],
|
||||
right_eye: Union[list, tuple],
|
||||
) -> np.ndarray:
|
||||
) -> Tuple[np.ndarray, float]:
|
||||
"""
|
||||
Align a given image horizantally with respect to their left and right eye locations
|
||||
Args:
|
||||
@ -200,13 +203,13 @@ def align_face(
|
||||
"""
|
||||
# if eye could not be detected for the given image, return image itself
|
||||
if left_eye is None or right_eye is None:
|
||||
return img
|
||||
return img, 0
|
||||
|
||||
# sometimes unexpectedly detected images come with nil dimensions
|
||||
if img.shape[0] == 0 or img.shape[1] == 0:
|
||||
return img
|
||||
return img, 0
|
||||
|
||||
angle = float(np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0])))
|
||||
img = Image.fromarray(img)
|
||||
img = np.array(img.rotate(angle))
|
||||
return img
|
||||
return img, angle
|
||||
|
@ -354,15 +354,21 @@ def __find_bulk_embeddings(
|
||||
desc="Finding representations",
|
||||
disable=silent,
|
||||
):
|
||||
img_objs = detection.extract_faces(
|
||||
img_path=employee,
|
||||
target_size=target_size,
|
||||
detector_backend=detector_backend,
|
||||
grayscale=False,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
try:
|
||||
img_objs = detection.extract_faces(
|
||||
img_path=employee,
|
||||
target_size=target_size,
|
||||
detector_backend=detector_backend,
|
||||
grayscale=False,
|
||||
enforce_detection=enforce_detection,
|
||||
align=align,
|
||||
expand_percentage=expand_percentage,
|
||||
)
|
||||
except ValueError as err:
|
||||
logger.warn(
|
||||
f"Exception while extracting faces from {employee}: {str(err)}. Skipping it."
|
||||
)
|
||||
img_objs = []
|
||||
|
||||
for img_obj in img_objs:
|
||||
img_content = img_obj["face"]
|
||||
|
BIN
tests/dataset/img11_reflection.jpg
Normal file
BIN
tests/dataset/img11_reflection.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 232 KiB |
@ -53,15 +53,38 @@ dfs = DeepFace.find(
|
||||
for df in dfs:
|
||||
logger.info(df)
|
||||
|
||||
# extract faces
|
||||
for detector_backend in detector_backends:
|
||||
face_objs = DeepFace.extract_faces(
|
||||
img_path="dataset/img11.jpg", detector_backend=detector_backend
|
||||
)
|
||||
for face_obj in face_objs:
|
||||
face = face_obj["face"]
|
||||
logger.info(detector_backend)
|
||||
plt.imshow(face)
|
||||
plt.axis("off")
|
||||
plt.show()
|
||||
logger.info("-----------")
|
||||
|
||||
# img_paths = ["dataset/img11.jpg", "dataset/img11_reflection.jpg", "dataset/couple.jpg"]
|
||||
img_paths = ["dataset/img11.jpg"]
|
||||
for img_path in img_paths:
|
||||
# extract faces
|
||||
for detector_backend in detector_backends:
|
||||
face_objs = DeepFace.extract_faces(
|
||||
img_path=img_path,
|
||||
detector_backend=detector_backend,
|
||||
align=True,
|
||||
# expand_percentage=10,
|
||||
# target_size=None,
|
||||
)
|
||||
for face_obj in face_objs:
|
||||
face = face_obj["face"]
|
||||
logger.info(detector_backend)
|
||||
logger.info(face_obj["facial_area"])
|
||||
logger.info(face_obj["confidence"])
|
||||
|
||||
# we know opencv sometimes cannot find eyes
|
||||
if face_obj["facial_area"]["left_eye"] is not None:
|
||||
assert isinstance(face_obj["facial_area"]["left_eye"], tuple)
|
||||
assert isinstance(face_obj["facial_area"]["left_eye"][0], int)
|
||||
assert isinstance(face_obj["facial_area"]["left_eye"][1], int)
|
||||
|
||||
if face_obj["facial_area"]["right_eye"] is not None:
|
||||
assert isinstance(face_obj["facial_area"]["right_eye"], tuple)
|
||||
assert isinstance(face_obj["facial_area"]["right_eye"][0], int)
|
||||
assert isinstance(face_obj["facial_area"]["right_eye"][1], int)
|
||||
|
||||
assert isinstance(face_obj["confidence"], float)
|
||||
plt.imshow(face)
|
||||
plt.axis("off")
|
||||
plt.show()
|
||||
logger.info("-----------")
|
||||
|
Loading…
x
Reference in New Issue
Block a user