mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 20:15:21 +00:00
486 lines
17 KiB
Python
486 lines
17 KiB
Python
import os
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
import pandas as pd
|
|
import cv2
|
|
import time
|
|
import re
|
|
|
|
import os
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
|
|
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace, DeepID
|
|
from deepface.basemodels.DlibResNet import DlibResNet
|
|
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
|
from deepface.commons import functions, realtime, distance as dst
|
|
|
|
def analysis(db_path, model_name, distance_metric, enable_face_analysis = True):
|
|
|
|
input_shape = (224, 224)
|
|
input_shape_x = input_shape[0]; input_shape_y = input_shape[1]
|
|
|
|
text_color = (255,255,255)
|
|
|
|
employees = []
|
|
#check passed db folder exists
|
|
if os.path.isdir(db_path) == True:
|
|
for r, d, f in os.walk(db_path): # r=root, d=directories, f = files
|
|
for file in f:
|
|
if ('.jpg' in file):
|
|
#exact_path = os.path.join(r, file)
|
|
exact_path = r + "/" + file
|
|
#print(exact_path)
|
|
employees.append(exact_path)
|
|
|
|
if len(employees) == 0:
|
|
print("WARNING: There is no image in this path ( ", db_path,") . Face recognition will not be performed.")
|
|
|
|
#------------------------
|
|
|
|
if len(employees) > 0:
|
|
if model_name == 'VGG-Face':
|
|
print("Using VGG-Face model backend and", distance_metric,"distance.")
|
|
model = VGGFace.loadModel()
|
|
input_shape = (224, 224)
|
|
|
|
elif model_name == 'OpenFace':
|
|
print("Using OpenFace model backend", distance_metric,"distance.")
|
|
model = OpenFace.loadModel()
|
|
input_shape = (96, 96)
|
|
|
|
elif model_name == 'Facenet':
|
|
print("Using Facenet model backend", distance_metric,"distance.")
|
|
model = Facenet.loadModel()
|
|
input_shape = (160, 160)
|
|
|
|
elif model_name == 'DeepFace':
|
|
print("Using FB DeepFace model backend", distance_metric,"distance.")
|
|
model = FbDeepFace.loadModel()
|
|
input_shape = (152, 152)
|
|
|
|
elif model_name == 'DeepID':
|
|
print("Using DeepID model backend", distance_metric,"distance.")
|
|
model = DeepID.loadModel()
|
|
input_shape = (55, 47)
|
|
|
|
elif model_name == 'Dlib':
|
|
print("Using Dlib model backend", distance_metric,"distance.")
|
|
model = DlibResNet()
|
|
input_shape = (150, 150)
|
|
|
|
else:
|
|
raise ValueError("Invalid model_name passed - ", model_name)
|
|
#------------------------
|
|
|
|
input_shape_x = input_shape[0]
|
|
input_shape_y = input_shape[1]
|
|
|
|
#tuned thresholds for model and metric pair
|
|
threshold = functions.findThreshold(model_name, distance_metric)
|
|
|
|
#------------------------
|
|
#facial attribute analysis models
|
|
|
|
if enable_face_analysis == True:
|
|
|
|
tic = time.time()
|
|
|
|
emotion_model = Emotion.loadModel()
|
|
print("Emotion model loaded")
|
|
|
|
age_model = Age.loadModel()
|
|
print("Age model loaded")
|
|
|
|
gender_model = Gender.loadModel()
|
|
print("Gender model loaded")
|
|
|
|
toc = time.time()
|
|
|
|
print("Facial attibute analysis models loaded in ",toc-tic," seconds")
|
|
|
|
#------------------------
|
|
|
|
#find embeddings for employee list
|
|
|
|
tic = time.time()
|
|
|
|
pbar = tqdm(range(0, len(employees)), desc='Finding embeddings')
|
|
|
|
embeddings = []
|
|
#for employee in employees:
|
|
for index in pbar:
|
|
employee = employees[index]
|
|
pbar.set_description("Finding embedding for %s" % (employee.split("/")[-1]))
|
|
embedding = []
|
|
img = functions.detectFace(employee, (input_shape_y, input_shape_x))
|
|
img_representation = model.predict(img)[0,:]
|
|
|
|
embedding.append(employee)
|
|
embedding.append(img_representation)
|
|
embeddings.append(embedding)
|
|
|
|
df = pd.DataFrame(embeddings, columns = ['employee', 'embedding'])
|
|
df['distance_metric'] = distance_metric
|
|
|
|
toc = time.time()
|
|
|
|
print("Embeddings found for given data set in ", toc-tic," seconds")
|
|
|
|
#-----------------------
|
|
|
|
time_threshold = 5; frame_threshold = 5
|
|
pivot_img_size = 112 #face recognition result image
|
|
|
|
#-----------------------
|
|
|
|
opencv_path = functions.get_opencv_path()
|
|
face_detector_path = opencv_path+"haarcascade_frontalface_default.xml"
|
|
face_cascade = cv2.CascadeClassifier(face_detector_path)
|
|
|
|
#-----------------------
|
|
|
|
freeze = False
|
|
face_detected = False
|
|
face_included_frames = 0 #freeze screen if face detected sequantially 5 frames
|
|
freezed_frame = 0
|
|
tic = time.time()
|
|
|
|
cap = cv2.VideoCapture(0) #webcam
|
|
#cap = cv2.VideoCapture("C:/Users/IS96273/Desktop/skype-video-1.mp4") #video
|
|
|
|
while(True):
|
|
ret, img = cap.read()
|
|
|
|
#cv2.namedWindow('img', cv2.WINDOW_FREERATIO)
|
|
#cv2.setWindowProperty('img', cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN)
|
|
|
|
raw_img = img.copy()
|
|
resolution = img.shape
|
|
|
|
resolution_x = img.shape[1]; resolution_y = img.shape[0]
|
|
|
|
if freeze == False:
|
|
faces = face_cascade.detectMultiScale(img, 1.3, 5)
|
|
|
|
if len(faces) == 0:
|
|
face_included_frames = 0
|
|
else:
|
|
faces = []
|
|
|
|
detected_faces = []
|
|
face_index = 0
|
|
for (x,y,w,h) in faces:
|
|
if w > 130: #discard small detected faces
|
|
|
|
face_detected = True
|
|
if face_index == 0:
|
|
face_included_frames = face_included_frames + 1 #increase frame for a single face
|
|
|
|
cv2.rectangle(img, (x,y), (x+w,y+h), (67,67,67), 1) #draw rectangle to main image
|
|
|
|
cv2.putText(img, str(frame_threshold - face_included_frames), (int(x+w/4),int(y+h/1.5)), cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 255, 255), 2)
|
|
|
|
detected_face = img[int(y):int(y+h), int(x):int(x+w)] #crop detected face
|
|
|
|
#-------------------------------------
|
|
|
|
detected_faces.append((x,y,w,h))
|
|
face_index = face_index + 1
|
|
|
|
#-------------------------------------
|
|
|
|
if face_detected == True and face_included_frames == frame_threshold and freeze == False:
|
|
freeze = True
|
|
#base_img = img.copy()
|
|
base_img = raw_img.copy()
|
|
detected_faces_final = detected_faces.copy()
|
|
tic = time.time()
|
|
|
|
if freeze == True:
|
|
|
|
toc = time.time()
|
|
if (toc - tic) < time_threshold:
|
|
|
|
if freezed_frame == 0:
|
|
freeze_img = base_img.copy()
|
|
#freeze_img = np.zeros(resolution, np.uint8) #here, np.uint8 handles showing white area issue
|
|
|
|
for detected_face in detected_faces_final:
|
|
x = detected_face[0]; y = detected_face[1]
|
|
w = detected_face[2]; h = detected_face[3]
|
|
|
|
cv2.rectangle(freeze_img, (x,y), (x+w,y+h), (67,67,67), 1) #draw rectangle to main image
|
|
|
|
#-------------------------------
|
|
|
|
#apply deep learning for custom_face
|
|
|
|
custom_face = base_img[y:y+h, x:x+w]
|
|
|
|
#-------------------------------
|
|
#facial attribute analysis
|
|
|
|
if enable_face_analysis == True:
|
|
|
|
gray_img = functions.detectFace(custom_face, (48, 48), True)
|
|
emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
|
|
emotion_predictions = emotion_model.predict(gray_img)[0,:]
|
|
sum_of_predictions = emotion_predictions.sum()
|
|
|
|
mood_items = []
|
|
for i in range(0, len(emotion_labels)):
|
|
mood_item = []
|
|
emotion_label = emotion_labels[i]
|
|
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
|
mood_item.append(emotion_label)
|
|
mood_item.append(emotion_prediction)
|
|
mood_items.append(mood_item)
|
|
|
|
emotion_df = pd.DataFrame(mood_items, columns = ["emotion", "score"])
|
|
emotion_df = emotion_df.sort_values(by = ["score"], ascending=False).reset_index(drop=True)
|
|
|
|
#background of mood box
|
|
|
|
#transparency
|
|
overlay = freeze_img.copy()
|
|
opacity = 0.4
|
|
|
|
if x+w+pivot_img_size < resolution_x:
|
|
#right
|
|
cv2.rectangle(freeze_img
|
|
#, (x+w,y+20)
|
|
, (x+w,y)
|
|
, (x+w+pivot_img_size, y+h)
|
|
, (64,64,64),cv2.FILLED)
|
|
|
|
cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img)
|
|
|
|
elif x-pivot_img_size > 0:
|
|
#left
|
|
cv2.rectangle(freeze_img
|
|
#, (x-pivot_img_size,y+20)
|
|
, (x-pivot_img_size,y)
|
|
, (x, y+h)
|
|
, (64,64,64),cv2.FILLED)
|
|
|
|
cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img)
|
|
|
|
for index, instance in emotion_df.iterrows():
|
|
emotion_label = "%s " % (instance['emotion'])
|
|
emotion_score = instance['score']/100
|
|
|
|
bar_x = 35 #this is the size if an emotion is 100%
|
|
bar_x = int(bar_x * emotion_score)
|
|
|
|
if x+w+pivot_img_size < resolution_x:
|
|
|
|
text_location_y = y + 20 + (index+1) * 20
|
|
text_location_x = x+w
|
|
|
|
if text_location_y < y + h:
|
|
cv2.putText(freeze_img, emotion_label, (text_location_x, text_location_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
|
|
|
cv2.rectangle(freeze_img
|
|
, (x+w+70, y + 13 + (index+1) * 20)
|
|
, (x+w+70+bar_x, y + 13 + (index+1) * 20 + 5)
|
|
, (255,255,255), cv2.FILLED)
|
|
|
|
elif x-pivot_img_size > 0:
|
|
|
|
text_location_y = y + 20 + (index+1) * 20
|
|
text_location_x = x-pivot_img_size
|
|
|
|
if text_location_y <= y+h:
|
|
cv2.putText(freeze_img, emotion_label, (text_location_x, text_location_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
|
|
|
cv2.rectangle(freeze_img
|
|
, (x-pivot_img_size+70, y + 13 + (index+1) * 20)
|
|
, (x-pivot_img_size+70+bar_x, y + 13 + (index+1) * 20 + 5)
|
|
, (255,255,255), cv2.FILLED)
|
|
|
|
#-------------------------------
|
|
|
|
face_224 = functions.detectFace(custom_face, (224, 224), False)
|
|
|
|
age_predictions = age_model.predict(face_224)[0,:]
|
|
apparent_age = Age.findApparentAge(age_predictions)
|
|
|
|
#-------------------------------
|
|
|
|
gender_prediction = gender_model.predict(face_224)[0,:]
|
|
|
|
if np.argmax(gender_prediction) == 0:
|
|
gender = "W"
|
|
elif np.argmax(gender_prediction) == 1:
|
|
gender = "M"
|
|
|
|
#print(str(int(apparent_age))," years old ", dominant_emotion, " ", gender)
|
|
|
|
analysis_report = str(int(apparent_age))+" "+gender
|
|
|
|
#-------------------------------
|
|
|
|
info_box_color = (46,200,255)
|
|
|
|
#top
|
|
if y - pivot_img_size + int(pivot_img_size/5) > 0:
|
|
|
|
triangle_coordinates = np.array( [
|
|
(x+int(w/2), y)
|
|
, (x+int(w/2)-int(w/10), y-int(pivot_img_size/3))
|
|
, (x+int(w/2)+int(w/10), y-int(pivot_img_size/3))
|
|
] )
|
|
|
|
cv2.drawContours(freeze_img, [triangle_coordinates], 0, info_box_color, -1)
|
|
|
|
cv2.rectangle(freeze_img, (x+int(w/5), y-pivot_img_size+int(pivot_img_size/5)), (x+w-int(w/5), y-int(pivot_img_size/3)), info_box_color, cv2.FILLED)
|
|
|
|
cv2.putText(freeze_img, analysis_report, (x+int(w/3.5), y - int(pivot_img_size/2.1)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 111, 255), 2)
|
|
|
|
#bottom
|
|
elif y + h + pivot_img_size - int(pivot_img_size/5) < resolution_y:
|
|
|
|
triangle_coordinates = np.array( [
|
|
(x+int(w/2), y+h)
|
|
, (x+int(w/2)-int(w/10), y+h+int(pivot_img_size/3))
|
|
, (x+int(w/2)+int(w/10), y+h+int(pivot_img_size/3))
|
|
] )
|
|
|
|
cv2.drawContours(freeze_img, [triangle_coordinates], 0, info_box_color, -1)
|
|
|
|
cv2.rectangle(freeze_img, (x+int(w/5), y + h + int(pivot_img_size/3)), (x+w-int(w/5), y+h+pivot_img_size-int(pivot_img_size/5)), info_box_color, cv2.FILLED)
|
|
|
|
cv2.putText(freeze_img, analysis_report, (x+int(w/3.5), y + h + int(pivot_img_size/1.5)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 111, 255), 2)
|
|
|
|
#-------------------------------
|
|
#face recognition
|
|
|
|
custom_face = functions.detectFace(custom_face, (input_shape_y, input_shape_x))
|
|
|
|
#check detectFace function handled
|
|
if custom_face.shape[1:3] == input_shape:
|
|
if df.shape[0] > 0: #if there are images to verify, apply face recognition
|
|
img1_representation = model.predict(custom_face)[0,:]
|
|
|
|
#print(freezed_frame," - ",img1_representation[0:5])
|
|
|
|
def findDistance(row):
|
|
distance_metric = row['distance_metric']
|
|
img2_representation = row['embedding']
|
|
|
|
distance = 1000 #initialize very large value
|
|
if distance_metric == 'cosine':
|
|
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
|
elif distance_metric == 'euclidean':
|
|
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
|
|
elif distance_metric == 'euclidean_l2':
|
|
distance = dst.findEuclideanDistance(dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation))
|
|
|
|
return distance
|
|
|
|
df['distance'] = df.apply(findDistance, axis = 1)
|
|
df = df.sort_values(by = ["distance"])
|
|
|
|
candidate = df.iloc[0]
|
|
employee_name = candidate['employee']
|
|
best_distance = candidate['distance']
|
|
|
|
#print(candidate[['employee', 'distance']].values)
|
|
|
|
#if True:
|
|
if best_distance <= threshold:
|
|
#print(employee_name)
|
|
display_img = cv2.imread(employee_name)
|
|
|
|
display_img = cv2.resize(display_img, (pivot_img_size, pivot_img_size))
|
|
|
|
label = employee_name.split("/")[-1].replace(".jpg", "")
|
|
label = re.sub('[0-9]', '', label)
|
|
|
|
try:
|
|
if y - pivot_img_size > 0 and x + w + pivot_img_size < resolution_x:
|
|
#top right
|
|
freeze_img[y - pivot_img_size:y, x+w:x+w+pivot_img_size] = display_img
|
|
|
|
overlay = freeze_img.copy(); opacity = 0.4
|
|
cv2.rectangle(freeze_img,(x+w,y),(x+w+pivot_img_size, y+20),(46,200,255),cv2.FILLED)
|
|
cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img)
|
|
|
|
cv2.putText(freeze_img, label, (x+w, y+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1)
|
|
|
|
#connect face and text
|
|
cv2.line(freeze_img,(x+int(w/2), y), (x+3*int(w/4), y-int(pivot_img_size/2)),(67,67,67),1)
|
|
cv2.line(freeze_img, (x+3*int(w/4), y-int(pivot_img_size/2)), (x+w, y - int(pivot_img_size/2)), (67,67,67),1)
|
|
|
|
elif y + h + pivot_img_size < resolution_y and x - pivot_img_size > 0:
|
|
#bottom left
|
|
freeze_img[y+h:y+h+pivot_img_size, x-pivot_img_size:x] = display_img
|
|
|
|
overlay = freeze_img.copy(); opacity = 0.4
|
|
cv2.rectangle(freeze_img,(x-pivot_img_size,y+h-20),(x, y+h),(46,200,255),cv2.FILLED)
|
|
cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img)
|
|
|
|
cv2.putText(freeze_img, label, (x - pivot_img_size, y+h-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1)
|
|
|
|
#connect face and text
|
|
cv2.line(freeze_img,(x+int(w/2), y+h), (x+int(w/2)-int(w/4), y+h+int(pivot_img_size/2)),(67,67,67),1)
|
|
cv2.line(freeze_img, (x+int(w/2)-int(w/4), y+h+int(pivot_img_size/2)), (x, y+h+int(pivot_img_size/2)), (67,67,67),1)
|
|
|
|
elif y - pivot_img_size > 0 and x - pivot_img_size > 0:
|
|
#top left
|
|
freeze_img[y-pivot_img_size:y, x-pivot_img_size:x] = display_img
|
|
|
|
overlay = freeze_img.copy(); opacity = 0.4
|
|
cv2.rectangle(freeze_img,(x- pivot_img_size,y),(x, y+20),(46,200,255),cv2.FILLED)
|
|
cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img)
|
|
|
|
cv2.putText(freeze_img, label, (x - pivot_img_size, y+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1)
|
|
|
|
#connect face and text
|
|
cv2.line(freeze_img,(x+int(w/2), y), (x+int(w/2)-int(w/4), y-int(pivot_img_size/2)),(67,67,67),1)
|
|
cv2.line(freeze_img, (x+int(w/2)-int(w/4), y-int(pivot_img_size/2)), (x, y - int(pivot_img_size/2)), (67,67,67),1)
|
|
|
|
elif x+w+pivot_img_size < resolution_x and y + h + pivot_img_size < resolution_y:
|
|
#bottom righ
|
|
freeze_img[y+h:y+h+pivot_img_size, x+w:x+w+pivot_img_size] = display_img
|
|
|
|
overlay = freeze_img.copy(); opacity = 0.4
|
|
cv2.rectangle(freeze_img,(x+w,y+h-20),(x+w+pivot_img_size, y+h),(46,200,255),cv2.FILLED)
|
|
cv2.addWeighted(overlay, opacity, freeze_img, 1 - opacity, 0, freeze_img)
|
|
|
|
cv2.putText(freeze_img, label, (x+w, y+h-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1)
|
|
|
|
#connect face and text
|
|
cv2.line(freeze_img,(x+int(w/2), y+h), (x+int(w/2)+int(w/4), y+h+int(pivot_img_size/2)),(67,67,67),1)
|
|
cv2.line(freeze_img, (x+int(w/2)+int(w/4), y+h+int(pivot_img_size/2)), (x+w, y+h+int(pivot_img_size/2)), (67,67,67),1)
|
|
except Exception as err:
|
|
print(str(err))
|
|
|
|
tic = time.time() #in this way, freezed image can show 5 seconds
|
|
|
|
#-------------------------------
|
|
|
|
time_left = int(time_threshold - (toc - tic) + 1)
|
|
|
|
cv2.rectangle(freeze_img, (10, 10), (90, 50), (67,67,67), -10)
|
|
cv2.putText(freeze_img, str(time_left), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
|
|
|
|
cv2.imshow('img', freeze_img)
|
|
|
|
freezed_frame = freezed_frame + 1
|
|
else:
|
|
face_detected = False
|
|
face_included_frames = 0
|
|
freeze = False
|
|
freezed_frame = 0
|
|
|
|
else:
|
|
cv2.imshow('img',img)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'): #press q to quit
|
|
break
|
|
|
|
#kill open cv things
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|