156 lines
4.4 KiB
Python

# stdlib dependencies
from typing import List, Union
# 3rd party dependencies
import numpy as np
# project dependencies
from deepface.models.facial_recognition import VGGFace
from deepface.commons import package_utils, weight_utils
from deepface.models.Demography import Demography
from deepface.commons.logger import Logger
logger = Logger()
# ----------------------------------------
# dependency configurations
tf_version = package_utils.get_tf_major_version()
if tf_version == 1:
from keras.models import Model, Sequential
from keras.layers import Convolution2D, Flatten, Activation
else:
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
# ----------------------------------------
WEIGHTS_URL = (
"https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5"
)
# pylint: disable=too-few-public-methods
class ApparentAgeClient(Demography):
"""
Age model class
"""
def __init__(self):
self.model = load_model()
self.model_name = "Age"
def predict(self, img: Union[np.ndarray, List[np.ndarray]]) -> Union[np.float64, np.ndarray]:
"""
Predict apparent age(s) for single or multiple faces
Args:
img: Single image as np.ndarray (224, 224, 3) or
List of images as List[np.ndarray] or
Batch of images as np.ndarray (n, 224, 224, 3)
Returns:
Single age as np.float64 or
Multiple ages as np.ndarray (n,)
"""
# Convert to numpy array if input is list
if isinstance(img, list):
imgs = np.array(img)
else:
imgs = img
# Remove batch dimension if exists
imgs = imgs.squeeze()
# Check input dimension
if len(imgs.shape) == 3:
# Single image - add batch dimension
imgs = np.expand_dims(imgs, axis=0)
is_single = True
else:
is_single = False
# Batch prediction
age_predictions = self.model.predict_on_batch(imgs)
# Calculate apparent ages
apparent_ages = np.array(
[find_apparent_age(age_prediction) for age_prediction in age_predictions]
)
# Return single value for single image
if is_single:
return apparent_ages[0]
return apparent_ages
def predicts(self, imgs: List[np.ndarray]) -> np.ndarray:
"""
Predict apparent ages of multiple faces
Args:
imgs (List[np.ndarray]): (n, 224, 224, 3)
Returns:
apparent_ages (np.ndarray): (n,)
"""
# Convert list to numpy array
imgs_:np.ndarray = np.array(imgs)
# Remove batch dimension if exists
imgs_ = imgs_.squeeze()
# Check if the input is a single image
if len(imgs_.shape) == 3:
# Add batch dimension if not exists
imgs_ = np.expand_dims(imgs_, axis=0)
# Batch prediction
age_predictions = self.model.predict_on_batch(imgs_)
apparent_ages = np.array(
[find_apparent_age(age_prediction) for age_prediction in age_predictions]
)
return apparent_ages
def load_model(
url=WEIGHTS_URL,
) -> Model:
"""
Construct age model, download its weights and load
Returns:
model (Model)
"""
model = VGGFace.base_model()
# --------------------------
classes = 101
base_model_output = Sequential()
base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output)
base_model_output = Flatten()(base_model_output)
base_model_output = Activation("softmax")(base_model_output)
# --------------------------
age_model = Model(inputs=model.inputs, outputs=base_model_output)
# --------------------------
# load weights
weight_file = weight_utils.download_weights_if_necessary(
file_name="age_model_weights.h5", source_url=url
)
age_model = weight_utils.load_model_weights(model=age_model, weight_file=weight_file)
return age_model
def find_apparent_age(age_predictions: np.ndarray) -> np.float64:
"""
Find apparent age prediction from a given probas of ages
Args:
age_predictions (?)
Returns:
apparent_age (float)
"""
output_indexes = np.arange(0, 101)
apparent_age = np.sum(age_predictions * output_indexes)
return apparent_age