2025-03-01 13:16:10 +05:30

101 lines
3.9 KiB
Python

import os
from typing import List, Union
import numpy as np
from deepface.commons import weight_utils, folder_utils
from deepface.commons.logger import Logger
from deepface.models.FacialRecognition import FacialRecognition
logger = Logger()
class Buffalo_L(FacialRecognition):
def __init__(self):
self.model = None
self.input_shape = (112, 112)
self.output_shape = 512
self.load_model()
def load_model(self):
"""
Load the InsightFace Buffalo_L recognition model.
"""
try:
from insightface.model_zoo import get_model
except Exception as err:
raise ModuleNotFoundError(
"InsightFace and its dependencies are optional for the Buffalo_L model. "
"Please install them with: "
"pip install insightface>=0.7.3 onnxruntime>=1.9.0 typing-extensions pydantic albumentations"
) from err
# Define the model filename and subdirectory
sub_dir = "buffalo_l"
model_file = "webface_r50.onnx" # Corrected from w600k_r50.onnx per serengil's comment
model_rel_path = os.path.join(sub_dir, model_file)
# Get the DeepFace home directory and construct weights path
home = folder_utils.get_deepface_home()
weights_dir = os.path.join(home, ".deepface", "weights")
buffalo_l_dir = os.path.join(weights_dir, sub_dir)
# Ensure the buffalo_l subdirectory exists
if not os.path.exists(buffalo_l_dir):
os.makedirs(buffalo_l_dir, exist_ok=True)
logger.info(f"Created directory: {buffalo_l_dir}")
# Download the model weights if not already present
weights_path = weight_utils.download_weights_if_necessary(
file_name=model_rel_path,
source_url="https://drive.google.com/uc?export=download&confirm=pbef&id=1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg"
)
# Verify the model file exists
if not os.path.exists(weights_path):
raise FileNotFoundError(f"Model file not found at: {weights_path}")
else:
logger.debug(f"Model file found at: {weights_path}")
# Load the model using the full path
self.model = get_model(weights_path) # Updated per serengil's feedback
self.model.prepare(ctx_id=-1, input_size=self.input_shape)
def preprocess(self, img: np.ndarray) -> np.ndarray:
"""
Preprocess the input image for the Buffalo_L model.
Args:
img: Input image as a numpy array of shape (112, 112, 3) or (1, 112, 112, 3).
Returns:
Preprocessed image as numpy array.
"""
# Ensure input is a single image
if len(img.shape) == 4:
if img.shape[0] == 1:
img = img[0] # Squeeze batch dimension if it's a single-image batch
else:
raise ValueError("Buffalo_L model expects a single image, not a batch.")
elif len(img.shape) != 3 or img.shape != (112, 112, 3):
raise ValueError("Input image must have shape (112, 112, 3).")
# Convert RGB to BGR as required by InsightFace
img = img[:, :, ::-1]
return img
def forward(self, img: np.ndarray) -> Union[List[float], List[List[float]]]:
"""
Extract face embedding from a pre-cropped face image.
Args:
img: Preprocessed face image with shape (1, 112, 112, 3) or batch (batch_size, 112, 112, 3)
Returns:
Face embedding as a list of floats or list of lists of floats
"""
img = self.preprocess(img)
embedding = self.model.get_feat(img)
if isinstance(embedding, np.ndarray) and len(embedding.shape) > 1:
embedding = embedding.flatten()
elif isinstance(embedding, list):
embedding = np.array(embedding).flatten()
else:
raise ValueError(f"Unexpected embedding type: {type(embedding)}")
return embedding.tolist()