added review changes

This commit is contained in:
Raghucharan16 2025-03-01 13:16:10 +05:30
parent 527a89c931
commit e363a56f09

View File

@ -30,7 +30,7 @@ class Buffalo_L(FacialRecognition):
# Define the model filename and subdirectory
sub_dir = "buffalo_l"
model_file = "webface_r50.onnx"
model_file = "webface_r50.onnx" # Corrected from w600k_r50.onnx per serengil's comment
model_rel_path = os.path.join(sub_dir, model_file)
# Get the DeepFace home directory and construct weights path
@ -46,58 +46,56 @@ class Buffalo_L(FacialRecognition):
# Download the model weights if not already present
weights_path = weight_utils.download_weights_if_necessary(
file_name=model_rel_path,
source_url="https://drive.google.com/uc?export=download&confirm=pbef&id=1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg" # pylint: disable=line-too-long
source_url="https://drive.google.com/uc?export=download&confirm=pbef&id=1N0GL-8ehw_bz2eZQWz2b0A5XBdXdxZhg"
)
# Verify the model file exists
if os.path.exists(weights_path):
logger.debug(f"Model file found at: {weights_path}")
else:
if not os.path.exists(weights_path):
raise FileNotFoundError(f"Model file not found at: {weights_path}")
else:
logger.debug(f"Model file found at: {weights_path}")
# Load the model using the full path
self.model = get_model(weights_path)
self.model = get_model(weights_path) # Updated per serengil's feedback
self.model.prepare(ctx_id=-1, input_size=self.input_shape)
def preprocess(self, img: np.ndarray) -> np.ndarray:
"""
Preprocess the image or batch of images to match InsightFace recognition model expectations.
Preprocess the input image for the Buffalo_L model.
Args:
img: Image in shape (1, 112, 112, 3) or (112, 112, 3) or batch (batch_size, 112, 112, 3)
img: Input image as a numpy array of shape (112, 112, 3) or (1, 112, 112, 3).
Returns:
Preprocessed image or batch as numpy array
Preprocessed image as numpy array.
"""
if len(img.shape) == 4: # Batch of images
preprocessed_imgs = []
for i in range(img.shape[0]):
single_img = img[i]
if single_img.max() <= 1.0:
single_img = (single_img * 255).astype(np.uint8)
single_img = single_img[:, :, ::-1] # Convert RGB to BGR
preprocessed_imgs.append(single_img)
return np.array(preprocessed_imgs)
if len(img.shape) != 3:
raise ValueError(
f"Expected image to be 3D after preprocessing, but got shape: {img.shape}")
if img.max() <= 1.0:
img = (img * 255).astype(np.uint8)
img = img[:, :, ::-1] # Convert RGB to BGR
# Ensure input is a single image
if len(img.shape) == 4:
if img.shape[0] == 1:
img = img[0] # Squeeze batch dimension if it's a single-image batch
else:
raise ValueError("Buffalo_L model expects a single image, not a batch.")
elif len(img.shape) != 3 or img.shape != (112, 112, 3):
raise ValueError("Input image must have shape (112, 112, 3).")
# Convert RGB to BGR as required by InsightFace
img = img[:, :, ::-1]
return img
def forward(self, img: np.ndarray) -> Union[List[float], List[List[float]]]:
"""
Extract face embedding from a pre-cropped face image or batch of images.
Extract face embedding from a pre-cropped face image.
Args:
img: Preprocessed face image with shape (1, 112, 112, 3) or batch (batch_size, 112, 112, 3)
Returns:
Face embedding as a list of floats (single image) or list of lists of floats (batch)
Face embedding as a list of floats or list of lists of floats
"""
img = self.preprocess(img)
if len(img.shape) == 4: # Batch
embeddings = self.model.get_feat(img)
return [embedding.tolist() for embedding in embeddings]
elif len(img.shape) == 3: # Single image
embedding = self.model.get_feat(np.expand_dims(img, axis=0))[0]
return embedding.tolist()
embedding = self.model.get_feat(img)
if isinstance(embedding, np.ndarray) and len(embedding.shape) > 1:
embedding = embedding.flatten()
elif isinstance(embedding, list):
embedding = np.array(embedding).flatten()
else:
raise ValueError(f"Unexpected embedding type after preprocessing: {img.shape}")
raise ValueError(f"Unexpected embedding type: {type(embedding)}")
return embedding.tolist()