This commit is contained in:
maglore9900 2024-09-13 12:56:20 -04:00
parent 4c8d015ed9
commit d195d63580
4 changed files with 177 additions and 178 deletions

View File

@ -1,6 +1,6 @@
from typing import TypedDict, Annotated, List, Union
import operator
from modules import adapter, spotify, app_launcher, windows_focus, sp_test2
from modules import adapter, speak, spotify, app_launcher, windows_focus
from langchain_core.agents import AgentAction, AgentFinish
from langchain.agents import create_openai_tools_agent
from langchain.prompts import PromptTemplate, SystemMessagePromptTemplate
@ -19,8 +19,7 @@ class Agent:
self.ap = app_launcher.AppLauncher()
self.wf = windows_focus.WindowFocusManager()
self.llm = self.ad.llm_chat
# self.spk = speak.Speak()
self.spk = sp_test2.Speak(model="whisper")
self.spk = speak.Speak(model="whisper")
# Pull the template
self.prompt = hub.pull("hwchase17/openai-functions-agent")
self.max_prompt = '''

View File

@ -7,134 +7,123 @@ import speech_recognition as sr
import pyttsx3
import os
import random
from pydub import AudioSegment
import urllib.parse
import requests
from pydub import AudioSegment
import json
# from numpy import frombuffer, int16
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
class Speak:
def __init__(self, model="whisper"):
self.url = "http://127.0.0.1:7851/api/tts-generate"
self.microphone = sr.Microphone()
self.engine = pyttsx3.init()
self.engine.setProperty('rate', 150)
self.model_name = model
self.sample_rate = 16000
self.chunk_size = 1024
self.noise_threshold = 500
# Initialize transcription models
self.noise_threshold = 500 # Threshold to detect ambient noise
# Initialize Vosk and Whisper models
if self.model_name == "vosk":
self.model_path = os.path.join(os.path.dirname(__file__), "../models/vosk-model-en-us-0.42-gigaspeech")
self.model = Model(self.model_path)
self.recognizer = KaldiRecognizer(self.model, 16000)
elif self.model_name == "whisper":
self.whisper_model_path = "large-v2"
self.whisper_model = WhisperModel(self.whisper_model_path, device="cuda") # Adjust if no CUDA
self.recognizer = WhisperModel(self.whisper_model_path, device="cuda") # Adjust if you don't have a CUDA-compatible GPU
# self.recognizer = None
else:
self.recognizer = sr.Recognizer()
def listen_to_microphone(self, time_listen=10):
"""Function to listen to the microphone input and return raw audio data."""
def listen3(self, time_listen=10):
"""
Streams audio from the microphone and applies noise cancellation.
"""
counter = 0
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk_size)
stream.start_stream()
print("Listening...")
audio_data = b""
ambient_noise_data = b""
try:
for i in range(int(self.sample_rate / self.chunk_size * time_listen)):
audio_chunk = stream.read(self.chunk_size)
audio_data += audio_chunk
# Capture ambient noise in the first 2 seconds
if i < int(self.sample_rate / self.chunk_size * 2): # First 2 seconds
ambient_noise_data += audio_chunk
while counter < time_listen:
# Read audio data from the stream
audio_data = stream.read(8000, exception_on_overflow=False)
# Convert the audio data to a numpy array of int16
audio_np = np.frombuffer(audio_data, dtype=np.int16)
# Apply noise reduction
reduced_noise = nr.reduce_noise(y=audio_np, sr=self.sample_rate)
# Calculate RMS to detect ambient noise levels
rms_value = np.sqrt(np.mean(np.square(reduced_noise)))
if rms_value < self.noise_threshold:
# Pass the reduced noise (still in numpy format) to the transcoder
self.transcoder(reduced_noise.tobytes())
else:
print(f"Ambient noise detected: RMS {rms_value} exceeds threshold {self.noise_threshold}")
counter += 1
except KeyboardInterrupt:
print("Stopping...")
finally:
# Clean up the stream resources
stream.stop_stream()
stream.close()
p.terminate()
return audio_data, ambient_noise_data
def apply_noise_cancellation(self, audio_data, ambient_noise):
"""Apply noise cancellation to the given audio data, using ambient noise from the first 2 seconds."""
# Convert to NumPy array (normalize to [-1, 1])
audio_np = np.frombuffer(audio_data, np.int16).astype(np.float32) / 32768.0
ambient_noise_np = np.frombuffer(ambient_noise, np.int16).astype(np.float32) / 32768.0
# Use ambient noise as noise profile
reduced_noise = nr.reduce_noise(y=audio_np, sr=self.sample_rate, y_noise=ambient_noise_np)
# Convert back to int16 after noise reduction for compatibility with Whisper
reduced_noise_int16 = (reduced_noise * 32768).astype(np.int16)
return reduced_noise_int16.tobytes() # Return as bytes
def transcribe(self, audio_data):
"""Transcribe the audio data using the selected model."""
if self.model_name == "whisper":
# # Whisper expects float32 data
# # Convert int16 PCM back to float32
# audio_np = np.frombuffer(audio_data, np.int16).astype(np.float32) / 32768.0
# # Transcribe using Whisper model
# segments, _ = self.whisper_model.transcribe(audio_np, beam_size=5)
# transcription = " ".join([segment.text for segment in segments])
# print(f"Whisper Transcription: {transcription}")
# return transcription
# Whisper expects float32 data
energy_threshold=0.001
audio_np = np.frombuffer(audio_data, np.int16).astype(np.float32) / 32768.0
# Calculate energy of the audio to determine if it should be transcribed
energy = np.mean(np.abs(audio_np))
# Only transcribe if energy exceeds the threshold
if energy > energy_threshold:
# print(f"Audio energy ({energy}) exceeds threshold ({energy_threshold}), proceeding with transcription.")
segments, _ = self.whisper_model.transcribe(audio_np, beam_size=5)
transcription = " ".join([segment.text for segment in segments])
print(f"Whisper Transcription: {transcription}")
return transcription
else:
# print(f"Audio energy ({energy}) is below the threshold ({energy_threshold}), skipping transcription.")
return ""
elif self.model_name == "vosk":
# Convert audio data to bytes for Vosk
def transcoder(self, audio_data):
"""
Transcodes audio data to text using the specified model.
"""
if self.model_name == "vosk":
if self.recognizer.AcceptWaveform(audio_data):
result = self.recognizer.Result()
print(f"Vosk Transcription: {result}")
return result
result = json.loads(self.recognizer.Result())
if result["text"]:
print(f"Recognized: {result['text']}")
return result['text']
return result
elif self.model_name == "whisper":
result, _ = self.recognizer.transcribe(audio_data, beam_size=5)
return result['text']
else:
# Fallback to default recognizer (for example, speech_recognition module)
recognizer = sr.Recognizer()
with sr.AudioFile(audio_data) as source:
audio = recognizer.record(source)
try:
transcription = recognizer.recognize_google(audio)
print(f"Google Transcription: {transcription}")
return transcription
except sr.UnknownValueError:
print("Google could not understand audio")
except sr.RequestError as e:
print(f"Could not request results; {e}")
result = self.recognizer.recognize_google(audio_data)
return result
def listen(self, time_listen=8):
"""Main transcoder function that handles listening, noise cancellation, and transcription."""
# Listen to the microphone and get both raw audio and ambient noise
raw_audio, ambient_noise = self.listen_to_microphone(time_listen)
# Apply noise cancellation using the ambient noise from the first 2 seconds
clean_audio = self.apply_noise_cancellation(raw_audio, ambient_noise=ambient_noise)
# def vosk_transcription(self):
# """
# Handles Vosk-based transcription of streamed audio with noise cancellation.
# """
# recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
# stream = self.stream_with_noise_cancellation()
# Transcribe the clean audio
transcription = self.transcribe(clean_audio)
# for audio_chunk in stream:
# if recognizer.AcceptWaveform(audio_chunk):
# result = recognizer.Result()
# print(result) # Handle or process the transcription result
return transcription
# def whisper_transcription(self):
# """
# Handles Faster-Whisper-based transcription of streamed audio with noise cancellation.
# """
# stream = self.stream_with_noise_cancellation()
# for audio_chunk in stream:
# # Transcribe the cleaned audio using faster-whisper
# result, _ = self.whisper_model.transcribe(audio_chunk, beam_size=5)
# print(result['text']) # Handle or process the transcription result
# def listen(self):
# if self.model == "vosk":
# self.vosk_transcription()
# elif self.model == "whisper":
# self.whisper_transcription()
# else:
# raise ValueError("Invalid model specified. Please specify either 'vosk' or 'whisper'.")
def glitch_stream_output(self, text):
def change_pitch(sound, octaves):
@ -220,8 +209,10 @@ class Speak:
except:
self.engine.say(text)
self.engine.runAndWait()
# Example usage:
# sp = Speak(model="vosk") # or "vosk" or "google"
# transcription = sp.transcoder(time_listen=10)
# print("Final Transcription:", transcription)
# sp = Speak(vosk_model_path="path_to_vosk_model", whisper_model_path="large-v2")
# sp.vosk_transcription() # To start Vosk transcription
# sp.whisper_transcription() # To start Faster-Whisper transcription
sp = Speak()
# sp.glitch_stream_output("Hello, world!")
sp.listen3()

View File

@ -7,123 +7,134 @@ import speech_recognition as sr
import pyttsx3
import os
import random
from pydub import AudioSegment
import urllib.parse
import requests
import json
# from numpy import frombuffer, int16
from pydub import AudioSegment
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
class Speak:
def __init__(self, model="whisper"):
self.url = "http://127.0.0.1:7851/api/tts-generate"
self.microphone = sr.Microphone()
self.engine = pyttsx3.init()
self.engine.setProperty('rate', 150)
self.model_name = model
self.sample_rate = 16000
self.chunk_size = 1024
self.noise_threshold = 500
self.noise_threshold = 500 # Threshold to detect ambient noise
# Initialize Vosk and Whisper models
# Initialize transcription models
if self.model_name == "vosk":
self.model_path = os.path.join(os.path.dirname(__file__), "../models/vosk-model-en-us-0.42-gigaspeech")
self.model = Model(self.model_path)
self.recognizer = KaldiRecognizer(self.model, 16000)
elif self.model_name == "whisper":
self.whisper_model_path = "large-v2"
self.recognizer = WhisperModel(self.whisper_model_path, device="cuda") # Adjust if you don't have a CUDA-compatible GPU
# self.recognizer = None
self.whisper_model = WhisperModel(self.whisper_model_path, device="cuda") # Adjust if no CUDA
else:
self.recognizer = sr.Recognizer()
def listen3(self, time_listen=10):
"""
Streams audio from the microphone and applies noise cancellation.
"""
counter = 0
def listen_to_microphone(self, time_listen=10):
"""Function to listen to the microphone input and return raw audio data."""
p = pyaudio.PyAudio()
stream = p.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk_size)
stream.start_stream()
print("Listening...")
audio_data = b""
ambient_noise_data = b""
try:
while counter < time_listen:
# Read audio data from the stream
audio_data = stream.read(8000, exception_on_overflow=False)
# Convert the audio data to a numpy array of int16
audio_np = np.frombuffer(audio_data, dtype=np.int16)
# Apply noise reduction
reduced_noise = nr.reduce_noise(y=audio_np, sr=self.sample_rate)
# Calculate RMS to detect ambient noise levels
rms_value = np.sqrt(np.mean(np.square(reduced_noise)))
if rms_value < self.noise_threshold:
# Pass the reduced noise (still in numpy format) to the transcoder
self.transcoder(reduced_noise.tobytes())
else:
print(f"Ambient noise detected: RMS {rms_value} exceeds threshold {self.noise_threshold}")
counter += 1
except KeyboardInterrupt:
print("Stopping...")
for i in range(int(self.sample_rate / self.chunk_size * time_listen)):
audio_chunk = stream.read(self.chunk_size)
audio_data += audio_chunk
# Capture ambient noise in the first 2 seconds
if i < int(self.sample_rate / self.chunk_size * 2): # First 2 seconds
ambient_noise_data += audio_chunk
finally:
# Clean up the stream resources
stream.stop_stream()
stream.close()
p.terminate()
def transcoder(self, audio_data):
"""
Transcodes audio data to text using the specified model.
"""
if self.model_name == "vosk":
return audio_data, ambient_noise_data
def apply_noise_cancellation(self, audio_data, ambient_noise):
"""Apply noise cancellation to the given audio data, using ambient noise from the first 2 seconds."""
# Convert to NumPy array (normalize to [-1, 1])
audio_np = np.frombuffer(audio_data, np.int16).astype(np.float32) / 32768.0
ambient_noise_np = np.frombuffer(ambient_noise, np.int16).astype(np.float32) / 32768.0
# Use ambient noise as noise profile
reduced_noise = nr.reduce_noise(y=audio_np, sr=self.sample_rate, y_noise=ambient_noise_np)
# Convert back to int16 after noise reduction for compatibility with Whisper
reduced_noise_int16 = (reduced_noise * 32768).astype(np.int16)
return reduced_noise_int16.tobytes() # Return as bytes
def transcribe(self, audio_data):
"""Transcribe the audio data using the selected model."""
if self.model_name == "whisper":
# # Whisper expects float32 data
# # Convert int16 PCM back to float32
# audio_np = np.frombuffer(audio_data, np.int16).astype(np.float32) / 32768.0
# # Transcribe using Whisper model
# segments, _ = self.whisper_model.transcribe(audio_np, beam_size=5)
# transcription = " ".join([segment.text for segment in segments])
# print(f"Whisper Transcription: {transcription}")
# return transcription
# Whisper expects float32 data
energy_threshold=0.001
audio_np = np.frombuffer(audio_data, np.int16).astype(np.float32) / 32768.0
# Calculate energy of the audio to determine if it should be transcribed
energy = np.mean(np.abs(audio_np))
# Only transcribe if energy exceeds the threshold
if energy > energy_threshold:
# print(f"Audio energy ({energy}) exceeds threshold ({energy_threshold}), proceeding with transcription.")
segments, _ = self.whisper_model.transcribe(audio_np, beam_size=5)
transcription = " ".join([segment.text for segment in segments])
print(f"Whisper Transcription: {transcription}")
return transcription
else:
# print(f"Audio energy ({energy}) is below the threshold ({energy_threshold}), skipping transcription.")
return ""
elif self.model_name == "vosk":
# Convert audio data to bytes for Vosk
if self.recognizer.AcceptWaveform(audio_data):
result = json.loads(self.recognizer.Result())
if result["text"]:
print(f"Recognized: {result['text']}")
return result['text']
return result
elif self.model_name == "whisper":
result, _ = self.recognizer.transcribe(audio_data, beam_size=5)
return result['text']
result = self.recognizer.Result()
print(f"Vosk Transcription: {result}")
return result
else:
result = self.recognizer.recognize_google(audio_data)
return result
# Fallback to default recognizer (for example, speech_recognition module)
recognizer = sr.Recognizer()
with sr.AudioFile(audio_data) as source:
audio = recognizer.record(source)
try:
transcription = recognizer.recognize_google(audio)
print(f"Google Transcription: {transcription}")
return transcription
except sr.UnknownValueError:
print("Google could not understand audio")
except sr.RequestError as e:
print(f"Could not request results; {e}")
def listen(self, time_listen=8):
"""Main transcoder function that handles listening, noise cancellation, and transcription."""
# Listen to the microphone and get both raw audio and ambient noise
raw_audio, ambient_noise = self.listen_to_microphone(time_listen)
# def vosk_transcription(self):
# """
# Handles Vosk-based transcription of streamed audio with noise cancellation.
# """
# recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
# stream = self.stream_with_noise_cancellation()
# Apply noise cancellation using the ambient noise from the first 2 seconds
clean_audio = self.apply_noise_cancellation(raw_audio, ambient_noise=ambient_noise)
# for audio_chunk in stream:
# if recognizer.AcceptWaveform(audio_chunk):
# result = recognizer.Result()
# print(result) # Handle or process the transcription result
# Transcribe the clean audio
transcription = self.transcribe(clean_audio)
# def whisper_transcription(self):
# """
# Handles Faster-Whisper-based transcription of streamed audio with noise cancellation.
# """
# stream = self.stream_with_noise_cancellation()
# for audio_chunk in stream:
# # Transcribe the cleaned audio using faster-whisper
# result, _ = self.whisper_model.transcribe(audio_chunk, beam_size=5)
# print(result['text']) # Handle or process the transcription result
# def listen(self):
# if self.model == "vosk":
# self.vosk_transcription()
# elif self.model == "whisper":
# self.whisper_transcription()
# else:
# raise ValueError("Invalid model specified. Please specify either 'vosk' or 'whisper'.")
return transcription
def glitch_stream_output(self, text):
def change_pitch(sound, octaves):
@ -209,10 +220,8 @@ class Speak:
except:
self.engine.say(text)
self.engine.runAndWait()
# Example usage:
# sp = Speak(vosk_model_path="path_to_vosk_model", whisper_model_path="large-v2")
# sp.vosk_transcription() # To start Vosk transcription
# sp.whisper_transcription() # To start Faster-Whisper transcription
sp = Speak()
# sp.glitch_stream_output("Hello, world!")
sp.listen3()
# sp = Speak(model="vosk") # or "vosk" or "google"
# transcription = sp.transcoder(time_listen=10)
# print("Final Transcription:", transcription)

View File

@ -89,7 +89,7 @@ class Speak:
# return result['text']
# else:
# print(f"Ambient noise detected: RMS {rms_value} exceeds threshold {noise_threshold}")
# count += 1
#
# except KeyboardInterrupt:
# print("Stopping...")
# finally: