oproxy/README.md
2024-11-09 13:42:18 +01:00

152 lines
3.4 KiB
Markdown

# OProxy
_High-performance, transparent proxy that supports both TCP and UDP protocols._
![OProxy](./imgs/screenshot.png)
A high-performance, transparent proxy that supports both TCP and UDP protocols.
**NOTE:** This proxy has been designed with local API proxy in mind. Specifically, I used it to forward Ollama API requests to the remote Ollama server for applications that try to connect to the local Ollama server on localhost.
## Features
- Transparent TCP proxying
- HTTP/HTTPS proxying without decrypting the traffic
- Headers and other metadata fully preserved
- Optional UDP support
- Detailed logging capabilities
- Configurable through environment variables
- Support for both file and stdout logging
- Data content logging (optional)
- Performance optimizations with configurable buffer sizes
- Real-time metrics monitoring
- Automatic log rotation
- Thread-safe metrics collection
- Throughput and connection statistics
## Requirements
- Python 3.7+
- python-dotenv
- socket
- threading
## Performance Features
### Metrics Monitoring
The proxy now includes built-in metrics collection and monitoring:
- Total connections tracking
- Active connections monitoring
- Bytes transferred counting
- Real-time throughput calculation
- Periodic metrics reporting (every 60 seconds)
### Performance Optimizations
- Optimized buffer sizes (65KB)
- Non-blocking I/O using select
- Socket buffer optimization
- Thread-safe operations
### Log Management
- Automatic log rotation (10MB per file)
- Up to 5 backup log files
- UTF-8 encoding support
- Compressed backup files
## Installation
1. Clone the repository:
```bash
git clone https://github.com/tcsenpai/oproxy.git
cd oproxy
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Copy the example environment file:
```bash
cp .env.example .env
```
4. Edit the .env file with your configuration:
```bash
# Example: your Ollama server is running on 192.168.1.100:11434
PROXY_PORT=11434
TARGET_HOST=192.168.1.100
TARGET_PORT=11434
```
## Usage
Basic TCP proxy:
```bash
python src/main.py
```
Enable logging to file:
```bash
python src/main.py --log-file=proxy.log
```
Enable data logging with debug level:
```bash
python src/main.py --log-file proxy.log --log-data --log-level DEBUG
```
Enable full data logging:
**NOTE:** This will log the entire payload of the request and response.
```bash
python src/main.py --log-file proxy.log --log-data --full-debug
```
Enable UDP support:
```bash
python src/main.py --enable-udp
```
### View Metrics
Metrics are automatically logged to your configured log file or stdout. They include:
```
Performance Metrics: {
'total_connections': 150,
'active_connections': 3,
'bytes_transferred': 1048576,
'uptime_seconds': 3600,
'bytes_per_second': 291.27
}
```
## Command Line Arguments
- `--log-file`: Path to the log file
- `--log-data`: Enable logging of data content
- `--log-level`: Set logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
- `--enable-udp`: Enable UDP proxy alongside TCP
- `--full-debug`: Enable full data logging (entire payload)
## Notes
- TCP proxy runs on the port specified in .env
- UDP proxy (if enabled) runs on PROXY_PORT + 1
- Data logging should be used carefully as it may contain sensitive information
- UDP support is experimental and runs as a daemon thread
- HTTPS proxying is handled without decrypting the traffic
## License
MIT License