mirror of
https://github.com/tcsenpai/pensieve.git
synced 2025-06-07 03:35:24 +00:00
feat(ocr): cleanup ocr server related content
This commit is contained in:
parent
04621f74ff
commit
d0f6b33554
@ -1,49 +0,0 @@
|
|||||||
# OCR Plugin
|
|
||||||
|
|
||||||
This is a README file for the OCR plugin. This plugin uses the `RapidOCR` library to perform OCR (Optical Character Recognition) on image files and updates the metadata of the entity with the OCR results.
|
|
||||||
|
|
||||||
## How to Run
|
|
||||||
|
|
||||||
To run this OCR plugin, follow the steps below:
|
|
||||||
|
|
||||||
1. **Install the required dependencies:**
|
|
||||||
|
|
||||||
```bash
|
|
||||||
pip install -r requirements.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
2. **Run the FastAPI application:**
|
|
||||||
|
|
||||||
You can run the FastAPI application using `uvicorn`. Make sure you are in the directory where `main.py` is located.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
uvicorn main:app --host 0.0.0.0 --port 8000
|
|
||||||
```
|
|
||||||
|
|
||||||
3. **Integration with memos:**
|
|
||||||
|
|
||||||
```sh
|
|
||||||
$ python -m memos.commands plugin create ocr http://localhost:8000
|
|
||||||
Plugin created successfully
|
|
||||||
```
|
|
||||||
|
|
||||||
```sh
|
|
||||||
$ python -m memos.commands plugin ls
|
|
||||||
|
|
||||||
ID Name Description Webhook URL
|
|
||||||
1 ocr http://localhost:8000/
|
|
||||||
```
|
|
||||||
|
|
||||||
```sh
|
|
||||||
$ python -m memos.commands plugin bind --lib 1 --plugin 1
|
|
||||||
Plugin bound to library successfully
|
|
||||||
```
|
|
||||||
|
|
||||||
## Endpoints
|
|
||||||
|
|
||||||
- `GET /`: Health check endpoint. Returns `{"healthy": True}` if the service is running.
|
|
||||||
- `POST /`: OCR endpoint. Accepts an `Entity` object and a `Location` header. Performs OCR on the image file and updates the entity's metadata with the OCR results.
|
|
||||||
|
|
||||||
## Metadata
|
|
||||||
|
|
||||||
The OCR results are stored in the metadata field named `ocr_result` with the following structure:
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,41 +0,0 @@
|
|||||||
Global:
|
|
||||||
text_score: 0.5
|
|
||||||
use_det: true
|
|
||||||
use_cls: true
|
|
||||||
use_rec: true
|
|
||||||
print_verbose: false
|
|
||||||
min_height: 30
|
|
||||||
width_height_ratio: 40
|
|
||||||
|
|
||||||
Det:
|
|
||||||
use_cuda: true
|
|
||||||
|
|
||||||
model_path: models/ch_PP-OCRv4_det_infer.onnx
|
|
||||||
|
|
||||||
limit_side_len: 1500
|
|
||||||
limit_type: min
|
|
||||||
|
|
||||||
thresh: 0.3
|
|
||||||
box_thresh: 0.3
|
|
||||||
max_candidates: 1000
|
|
||||||
unclip_ratio: 1.6
|
|
||||||
use_dilation: true
|
|
||||||
score_mode: fast
|
|
||||||
|
|
||||||
Cls:
|
|
||||||
use_cuda: true
|
|
||||||
|
|
||||||
model_path: models/ch_ppocr_mobile_v2.0_cls_train.onnx
|
|
||||||
|
|
||||||
cls_image_shape: [3, 48, 192]
|
|
||||||
cls_batch_num: 6
|
|
||||||
cls_thresh: 0.9
|
|
||||||
label_list: ['0', '180']
|
|
||||||
|
|
||||||
Rec:
|
|
||||||
use_cuda: true
|
|
||||||
|
|
||||||
model_path: models/ch_PP-OCRv4_rec_infer.onnx
|
|
||||||
|
|
||||||
rec_img_shape: [3, 48, 320]
|
|
||||||
rec_batch_num: 6
|
|
@ -1,41 +0,0 @@
|
|||||||
Global:
|
|
||||||
text_score: 0.5
|
|
||||||
use_det: true
|
|
||||||
use_cls: true
|
|
||||||
use_rec: true
|
|
||||||
print_verbose: false
|
|
||||||
min_height: 30
|
|
||||||
width_height_ratio: 40
|
|
||||||
|
|
||||||
Det:
|
|
||||||
use_cuda: false
|
|
||||||
|
|
||||||
model_path: models/ch_PP-OCRv4_det_infer.onnx
|
|
||||||
|
|
||||||
limit_side_len: 1500
|
|
||||||
limit_type: min
|
|
||||||
|
|
||||||
thresh: 0.3
|
|
||||||
box_thresh: 0.3
|
|
||||||
max_candidates: 1000
|
|
||||||
unclip_ratio: 1.6
|
|
||||||
use_dilation: true
|
|
||||||
score_mode: fast
|
|
||||||
|
|
||||||
Cls:
|
|
||||||
use_cuda: false
|
|
||||||
|
|
||||||
model_path: models/ch_ppocr_mobile_v2.0_cls_train.onnx
|
|
||||||
|
|
||||||
cls_image_shape: [3, 48, 192]
|
|
||||||
cls_batch_num: 6
|
|
||||||
cls_thresh: 0.9
|
|
||||||
label_list: ['0', '180']
|
|
||||||
|
|
||||||
Rec:
|
|
||||||
use_cuda: false
|
|
||||||
|
|
||||||
model_path: models/ch_PP-OCRv4_rec_infer.onnx
|
|
||||||
|
|
||||||
rec_img_shape: [3, 48, 320]
|
|
||||||
rec_batch_num: 6
|
|
@ -1,4 +0,0 @@
|
|||||||
rapidocr_onnxruntime
|
|
||||||
httpx
|
|
||||||
fastapi
|
|
||||||
# Note: If you are using GPU, you should add onnxruntime-gpu to the requirements
|
|
@ -1,209 +0,0 @@
|
|||||||
from PIL import Image
|
|
||||||
import numpy as np
|
|
||||||
import logging
|
|
||||||
from fastapi import FastAPI, Body, HTTPException
|
|
||||||
import base64
|
|
||||||
import io
|
|
||||||
import asyncio
|
|
||||||
from pydantic import BaseModel, Field
|
|
||||||
from typing import List
|
|
||||||
from multiprocessing import Pool
|
|
||||||
import threading
|
|
||||||
import time
|
|
||||||
import uvicorn
|
|
||||||
|
|
||||||
# Configure logger
|
|
||||||
logging.basicConfig(level=logging.INFO)
|
|
||||||
logger = logging.getLogger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI()
|
|
||||||
|
|
||||||
# 创建进程池
|
|
||||||
process_pool = None
|
|
||||||
|
|
||||||
|
|
||||||
def init_worker(use_gpu):
|
|
||||||
global ocr
|
|
||||||
ocr = init_ocr(use_gpu)
|
|
||||||
|
|
||||||
|
|
||||||
def init_process_pool(max_workers, use_gpu):
|
|
||||||
global process_pool
|
|
||||||
process_pool = Pool(
|
|
||||||
processes=max_workers, initializer=init_worker, initargs=(use_gpu,)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def init_ocr(use_gpu):
|
|
||||||
if use_gpu:
|
|
||||||
try:
|
|
||||||
from rapidocr_paddle import RapidOCR as RapidOCRPaddle
|
|
||||||
|
|
||||||
ocr = RapidOCRPaddle(
|
|
||||||
det_use_cuda=True, cls_use_cuda=True, rec_use_cuda=True
|
|
||||||
)
|
|
||||||
logger.info("Initialized OCR with RapidOCR Paddle (GPU)")
|
|
||||||
except ImportError:
|
|
||||||
logger.error(
|
|
||||||
"Failed to import rapidocr_paddle. Make sure it's installed for GPU usage."
|
|
||||||
)
|
|
||||||
raise
|
|
||||||
else:
|
|
||||||
try:
|
|
||||||
from rapidocr_onnxruntime import RapidOCR
|
|
||||||
|
|
||||||
ocr = RapidOCR(config_path="ppocr.yaml")
|
|
||||||
logger.info("Initialized OCR with RapidOCR ONNX Runtime (CPU)")
|
|
||||||
except ImportError:
|
|
||||||
logger.error(
|
|
||||||
"Failed to import rapidocr_onnxruntime. Make sure it's installed for CPU usage."
|
|
||||||
)
|
|
||||||
raise
|
|
||||||
return ocr
|
|
||||||
|
|
||||||
|
|
||||||
def convert_ocr_results(results):
|
|
||||||
if results is None:
|
|
||||||
return []
|
|
||||||
|
|
||||||
converted = []
|
|
||||||
for result in results:
|
|
||||||
item = {"dt_boxes": result[0], "rec_txt": result[1], "score": result[2]}
|
|
||||||
converted.append(item)
|
|
||||||
return converted
|
|
||||||
|
|
||||||
|
|
||||||
def predict(image_data):
|
|
||||||
global ocr
|
|
||||||
if ocr is None:
|
|
||||||
raise ValueError("OCR engine not initialized")
|
|
||||||
|
|
||||||
image = Image.open(io.BytesIO(image_data))
|
|
||||||
img_array = np.array(image)
|
|
||||||
results, _ = ocr(img_array)
|
|
||||||
converted_results = convert_ocr_results(results)
|
|
||||||
return converted_results
|
|
||||||
|
|
||||||
|
|
||||||
def convert_to_python_type(item):
|
|
||||||
if isinstance(item, np.ndarray):
|
|
||||||
return item.tolist()
|
|
||||||
elif isinstance(item, np.generic): # This includes numpy scalars like numpy.float32
|
|
||||||
return item.item()
|
|
||||||
elif isinstance(item, list):
|
|
||||||
return [convert_to_python_type(sub_item) for sub_item in item]
|
|
||||||
elif isinstance(item, dict):
|
|
||||||
return {key: convert_to_python_type(value) for key, value in item.items()}
|
|
||||||
else:
|
|
||||||
return item
|
|
||||||
|
|
||||||
|
|
||||||
async def async_predict(image_data):
|
|
||||||
loop = asyncio.get_running_loop()
|
|
||||||
results = await loop.run_in_executor(
|
|
||||||
None, process_pool.apply, predict, (image_data,)
|
|
||||||
)
|
|
||||||
return results
|
|
||||||
|
|
||||||
|
|
||||||
class OCRResult(BaseModel):
|
|
||||||
dt_boxes: List[List[float]] = Field(..., description="Bounding box coordinates")
|
|
||||||
rec_txt: str = Field(..., description="Recognized text")
|
|
||||||
score: float = Field(..., description="Confidence score")
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/predict", response_model=List[OCRResult])
|
|
||||||
async def predict_base64(image_base64: str = Body(..., embed=True)):
|
|
||||||
try:
|
|
||||||
if not image_base64:
|
|
||||||
raise HTTPException(status_code=400, detail="Missing image_base64 field")
|
|
||||||
|
|
||||||
# Remove header part if present
|
|
||||||
if image_base64.startswith("data:image"):
|
|
||||||
image_base64 = image_base64.split(",")[1]
|
|
||||||
|
|
||||||
# Decode the base64 image
|
|
||||||
image_data = base64.b64decode(image_base64)
|
|
||||||
|
|
||||||
# 直接传递图像数据给async_predict
|
|
||||||
ocr_result = await async_predict(image_data)
|
|
||||||
|
|
||||||
return convert_to_python_type(ocr_result)
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
logging.error(f"Error during OCR processing: {str(e)}")
|
|
||||||
raise HTTPException(status_code=500, detail=str(e))
|
|
||||||
|
|
||||||
|
|
||||||
shutdown_event = threading.Event()
|
|
||||||
|
|
||||||
|
|
||||||
def signal_handler(signum, frame):
|
|
||||||
logger.info("Received interrupt signal. Initiating shutdown...")
|
|
||||||
shutdown_event.set()
|
|
||||||
|
|
||||||
|
|
||||||
def run_server(app, host, port):
|
|
||||||
config = uvicorn.Config(app, host=host, port=port, loop="asyncio")
|
|
||||||
server = uvicorn.Server(config)
|
|
||||||
server.install_signal_handlers = (
|
|
||||||
lambda: None
|
|
||||||
) # Disable Uvicorn's own signal handlers
|
|
||||||
|
|
||||||
async def serve():
|
|
||||||
await server.serve()
|
|
||||||
|
|
||||||
thread = threading.Thread(target=asyncio.run, args=(serve(),))
|
|
||||||
thread.start()
|
|
||||||
|
|
||||||
try:
|
|
||||||
while not shutdown_event.is_set():
|
|
||||||
time.sleep(1)
|
|
||||||
except KeyboardInterrupt:
|
|
||||||
logger.info("Keyboard interrupt received. Initiating shutdown...")
|
|
||||||
finally:
|
|
||||||
shutdown_event.set()
|
|
||||||
logger.info("Stopping the server...")
|
|
||||||
asyncio.run(server.shutdown())
|
|
||||||
thread.join()
|
|
||||||
logger.info("Server stopped.")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import uvicorn
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="OCR Service")
|
|
||||||
parser.add_argument(
|
|
||||||
"--port",
|
|
||||||
type=int,
|
|
||||||
default=8000,
|
|
||||||
help="Port to run the OCR service on",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--max-workers",
|
|
||||||
type=int,
|
|
||||||
default=1,
|
|
||||||
help="Maximum number of worker threads for OCR processing",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--gpu",
|
|
||||||
action="store_true",
|
|
||||||
help="Use GPU for OCR processing",
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
port = args.port
|
|
||||||
max_workers = args.max_workers
|
|
||||||
use_gpu = args.gpu
|
|
||||||
|
|
||||||
try:
|
|
||||||
init_process_pool(max_workers, use_gpu)
|
|
||||||
run_server(app, "0.0.0.0", port)
|
|
||||||
finally:
|
|
||||||
logger.info("Shutting down process pool...")
|
|
||||||
if process_pool:
|
|
||||||
process_pool.close()
|
|
||||||
process_pool.join()
|
|
||||||
logger.info("Process pool shut down.")
|
|
@ -29,7 +29,6 @@ dependencies = [
|
|||||||
"pillow",
|
"pillow",
|
||||||
"piexif",
|
"piexif",
|
||||||
"imagehash",
|
"imagehash",
|
||||||
"rapidocr_onnxruntime",
|
|
||||||
"screeninfo",
|
"screeninfo",
|
||||||
"pywin32; sys_platform == 'win32'",
|
"pywin32; sys_platform == 'win32'",
|
||||||
"psutil; sys_platform == 'win32'",
|
"psutil; sys_platform == 'win32'",
|
||||||
|
Loading…
x
Reference in New Issue
Block a user