youlama/README.md
2024-10-05 12:30:21 +02:00

73 lines
1.7 KiB
Markdown

# YouTube Summarizer by TCSenpai
YouTube Summarizer is a Streamlit-based web application that allows users to generate summaries of YouTube videos using AI-powered language models.
## Features
- Fetch and cache YouTube video transcripts
- Summarize video content using Ollama AI models
- Display video information (title and channel)
- Customizable Ollama URL and model selection
## Installation
1. Clone the repository:
```
git clone https://github.com/yourusername/youtube-summarizer.git
cd youtube-summarizer
```
2. Install the required dependencies:
```
pip install -r requirements.txt
```
3. Set up environment variables:
Create a `.env` file in the root directory and add the following:
```
YOUTUBE_API_KEY=your_youtube_api_key
OLLAMA_MODEL=default_model_name
```
## Usage
1. Run the Streamlit app:
```
streamlit run src/main.py
```
2. Open your web browser and navigate to the provided local URL (usually `http://localhost:8501`).
3. Enter a YouTube video URL in the input field.
4. (Optional) Customize the Ollama URL and select a different AI model.
5. Click the "Summarize" button to generate a summary of the video.
## Dependencies
- Streamlit
- Pytube
- Ollama
- YouTube Data API
- Python-dotenv
## Project Structure
- `src/main.py`: Main Streamlit application
- `src/ollama_client.py`: Ollama API client for model interaction
- `src/video_info.py`: YouTube API integration for video information
- `transcript_cache/`: Directory for caching video transcripts
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## License
WTFPL License
## Credits
Icon: "https://www.flaticon.com/free-icons/subtitles" by Freepik - Flaticon