mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
details about return types
This commit is contained in:
parent
c9a7db8815
commit
359162aa5e
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List
|
||||||
import os
|
import os
|
||||||
import gdown
|
import gdown
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -53,7 +54,7 @@ class ArcFaceClient(FacialRecognition):
|
|||||||
self.model = load_model()
|
self.model = load_model()
|
||||||
self.model_name = "ArcFace"
|
self.model_name = "ArcFace"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with ArcFace model
|
find embeddings with ArcFace model
|
||||||
Args:
|
Args:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List
|
||||||
import os
|
import os
|
||||||
import gdown
|
import gdown
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -49,7 +50,7 @@ class DeepIdClient(FacialRecognition):
|
|||||||
self.model = load_model()
|
self.model = load_model()
|
||||||
self.model_name = "DeepId"
|
self.model_name = "DeepId"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with DeepId model
|
find embeddings with DeepId model
|
||||||
Args:
|
Args:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List
|
||||||
import os
|
import os
|
||||||
import bz2
|
import bz2
|
||||||
import gdown
|
import gdown
|
||||||
@ -20,7 +21,7 @@ class DlibClient(FacialRecognition):
|
|||||||
self.model = DlibResNet()
|
self.model = DlibResNet()
|
||||||
self.model_name = "Dlib"
|
self.model_name = "Dlib"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with Dlib model - different than regular models
|
find embeddings with Dlib model - different than regular models
|
||||||
Args:
|
Args:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List
|
||||||
import os
|
import os
|
||||||
import gdown
|
import gdown
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -53,7 +54,7 @@ class FaceNet128dClient(FacialRecognition):
|
|||||||
self.model = load_facenet128d_model()
|
self.model = load_facenet128d_model()
|
||||||
self.model_name = "FaceNet-128d"
|
self.model_name = "FaceNet-128d"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with FaceNet-128d model
|
find embeddings with FaceNet-128d model
|
||||||
Args:
|
Args:
|
||||||
@ -75,7 +76,7 @@ class FaceNet512dClient(FacialRecognition):
|
|||||||
self.model = load_facenet512d_model()
|
self.model = load_facenet512d_model()
|
||||||
self.model_name = "FaceNet-512d"
|
self.model_name = "FaceNet-512d"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with FaceNet-512d model
|
find embeddings with FaceNet-512d model
|
||||||
Args:
|
Args:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List
|
||||||
import os
|
import os
|
||||||
import zipfile
|
import zipfile
|
||||||
import gdown
|
import gdown
|
||||||
@ -46,7 +47,7 @@ class DeepFaceClient(FacialRecognition):
|
|||||||
self.model = load_model()
|
self.model = load_model()
|
||||||
self.model_name = "DeepFace"
|
self.model_name = "DeepFace"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with OpenFace model
|
find embeddings with OpenFace model
|
||||||
Args:
|
Args:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List
|
||||||
import os
|
import os
|
||||||
import gdown
|
import gdown
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
@ -36,7 +37,7 @@ class OpenFaceClient(FacialRecognition):
|
|||||||
self.model = load_model()
|
self.model = load_model()
|
||||||
self.model_name = "OpenFace"
|
self.model_name = "OpenFace"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with OpenFace model
|
find embeddings with OpenFace model
|
||||||
Args:
|
Args:
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
import os
|
import os
|
||||||
from typing import Any
|
from typing import Any, List
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2 as cv
|
import cv2 as cv
|
||||||
@ -23,7 +23,7 @@ class SFaceClient(FacialRecognition):
|
|||||||
self.model = load_model()
|
self.model = load_model()
|
||||||
self.model_name = "SFace"
|
self.model_name = "SFace"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with SFace model - different than regular models
|
find embeddings with SFace model - different than regular models
|
||||||
Args:
|
Args:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List
|
||||||
import os
|
import os
|
||||||
import gdown
|
import gdown
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -47,7 +48,7 @@ class VggFaceClient(FacialRecognition):
|
|||||||
self.model = load_model()
|
self.model = load_model()
|
||||||
self.model_name = "VGG-Face"
|
self.model_name = "VGG-Face"
|
||||||
|
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
"""
|
"""
|
||||||
find embeddings with VGG-Face model
|
find embeddings with VGG-Face model
|
||||||
Args:
|
Args:
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
import os
|
import os
|
||||||
from typing import Union, Tuple
|
from typing import Union, Tuple, List
|
||||||
import base64
|
import base64
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
@ -140,9 +140,9 @@ def extract_faces(
|
|||||||
grayscale: bool = False,
|
grayscale: bool = False,
|
||||||
enforce_detection: bool = True,
|
enforce_detection: bool = True,
|
||||||
align: bool = True,
|
align: bool = True,
|
||||||
) -> list:
|
) -> List[Tuple[np.ndarray, dict, float]]:
|
||||||
"""Extract faces from an image.
|
"""
|
||||||
|
Extract faces from an image.
|
||||||
Args:
|
Args:
|
||||||
img: a path, url, base64 or numpy array.
|
img: a path, url, base64 or numpy array.
|
||||||
target_size (tuple, optional): the target size of the extracted faces.
|
target_size (tuple, optional): the target size of the extracted faces.
|
||||||
@ -157,7 +157,12 @@ def extract_faces(
|
|||||||
ValueError: if face could not be detected and enforce_detection is True.
|
ValueError: if face could not be detected and enforce_detection is True.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
list: a list of extracted faces.
|
results (List[Tuple[np.ndarray, dict, float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (dict): The image region represented as
|
||||||
|
{"x": x, "y": y, "w": w, "h": h}
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# this is going to store a list of img itself (numpy), it region and confidence
|
# this is going to store a list of img itself (numpy), it region and confidence
|
||||||
@ -246,7 +251,7 @@ def extract_faces(
|
|||||||
"h": int(current_region[3]),
|
"h": int(current_region[3]),
|
||||||
}
|
}
|
||||||
|
|
||||||
extracted_face = [img_pixels, region_obj, confidence]
|
extracted_face = (img_pixels, region_obj, confidence)
|
||||||
extracted_faces.append(extracted_face)
|
extracted_faces.append(extracted_face)
|
||||||
|
|
||||||
if len(extracted_faces) == 0 and enforce_detection == True:
|
if len(extracted_faces) == 0 and enforce_detection == True:
|
||||||
|
@ -59,9 +59,20 @@ def detect_faces(detector_backend: str, img: np.ndarray, align: bool = True) ->
|
|||||||
detector_backend (str): detector name
|
detector_backend (str): detector name
|
||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
alig (bool): enable or disable alignment after detection
|
alig (bool): enable or disable alignment after detection
|
||||||
Returns
|
Returns:
|
||||||
result (list): tuple of face (np.ndarray), face region (list)
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
, confidence score (float)
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
face_detector: Detector = build_model(detector_backend)
|
face_detector: Detector = build_model(detector_backend)
|
||||||
return face_detector.detect_faces(img=img, align=align)
|
return face_detector.detect_faces(img=img, align=align)
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List, Tuple
|
||||||
import os
|
import os
|
||||||
import bz2
|
import bz2
|
||||||
import gdown
|
import gdown
|
||||||
@ -55,7 +56,9 @@ class DlibClient(Detector):
|
|||||||
detector["sp"] = sp
|
detector["sp"] = sp
|
||||||
return detector
|
return detector
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with dlib
|
Detect and align face with dlib
|
||||||
Args:
|
Args:
|
||||||
@ -63,7 +66,19 @@ class DlibClient(Detector):
|
|||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
# this is not a must dependency. do not import it in the global level.
|
# this is not a must dependency. do not import it in the global level.
|
||||||
try:
|
try:
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
from typing import Any, Union
|
from typing import Any, Union, List, Tuple
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from deepface.models.Detector import Detector
|
from deepface.models.Detector import Detector
|
||||||
|
from deepface.modules import detection
|
||||||
|
|
||||||
# Link -> https://github.com/timesler/facenet-pytorch
|
# Link -> https://github.com/timesler/facenet-pytorch
|
||||||
# Examples https://www.kaggle.com/timesler/guide-to-mtcnn-in-facenet-pytorch
|
# Examples https://www.kaggle.com/timesler/guide-to-mtcnn-in-facenet-pytorch
|
||||||
@ -11,14 +12,28 @@ class FastMtCnnClient(Detector):
|
|||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.model = self.build_model()
|
self.model = self.build_model()
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with mtcnn
|
Detect and align face with mtcnn
|
||||||
Args:
|
Args:
|
||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
resp = []
|
resp = []
|
||||||
|
|
||||||
@ -31,16 +46,16 @@ class FastMtCnnClient(Detector):
|
|||||||
) # returns boundingbox, prob, landmark
|
) # returns boundingbox, prob, landmark
|
||||||
if len(detections[0]) > 0:
|
if len(detections[0]) > 0:
|
||||||
|
|
||||||
for detection in zip(*detections):
|
for current_detection in zip(*detections):
|
||||||
x, y, w, h = xyxy_to_xywh(detection[0])
|
x, y, w, h = xyxy_to_xywh(current_detection[0])
|
||||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||||
img_region = [x, y, w, h]
|
img_region = [x, y, w, h]
|
||||||
confidence = detection[1]
|
confidence = current_detection[1]
|
||||||
|
|
||||||
if align:
|
if align:
|
||||||
left_eye = detection[2][0]
|
left_eye = current_detection[2][0]
|
||||||
right_eye = detection[2][1]
|
right_eye = current_detection[2][1]
|
||||||
detected_face = self.align_face(
|
detected_face = detection.align_face(
|
||||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
from typing import Any
|
from typing import Any, List, Tuple
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from deepface.models.Detector import Detector
|
from deepface.models.Detector import Detector
|
||||||
|
from deepface.modules import detection
|
||||||
|
|
||||||
# Link - https://google.github.io/mediapipe/solutions/face_detection
|
# Link - https://google.github.io/mediapipe/solutions/face_detection
|
||||||
|
|
||||||
@ -28,14 +29,28 @@ class MediaPipeClient(Detector):
|
|||||||
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.7)
|
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.7)
|
||||||
return face_detection
|
return face_detection
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with mediapipe
|
Detect and align face with mediapipe
|
||||||
Args:
|
Args:
|
||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
resp = []
|
resp = []
|
||||||
|
|
||||||
@ -49,11 +64,11 @@ class MediaPipeClient(Detector):
|
|||||||
return resp
|
return resp
|
||||||
|
|
||||||
# Extract the bounding box, the landmarks and the confidence score
|
# Extract the bounding box, the landmarks and the confidence score
|
||||||
for detection in results.detections:
|
for current_detection in results.detections:
|
||||||
(confidence,) = detection.score
|
(confidence,) = current_detection.score
|
||||||
|
|
||||||
bounding_box = detection.location_data.relative_bounding_box
|
bounding_box = current_detection.location_data.relative_bounding_box
|
||||||
landmarks = detection.location_data.relative_keypoints
|
landmarks = current_detection.location_data.relative_keypoints
|
||||||
|
|
||||||
x = int(bounding_box.xmin * img_width)
|
x = int(bounding_box.xmin * img_width)
|
||||||
w = int(bounding_box.width * img_width)
|
w = int(bounding_box.width * img_width)
|
||||||
@ -73,7 +88,7 @@ class MediaPipeClient(Detector):
|
|||||||
img_region = [x, y, w, h]
|
img_region = [x, y, w, h]
|
||||||
|
|
||||||
if align:
|
if align:
|
||||||
detected_face = self.align_face(
|
detected_face = detection.align_face(
|
||||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,9 +1,11 @@
|
|||||||
|
from typing import List, Tuple
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from mtcnn import MTCNN
|
from mtcnn import MTCNN
|
||||||
from deepface.models.Detector import Detector
|
from deepface.models.Detector import Detector
|
||||||
|
from deepface.modules import detection
|
||||||
|
|
||||||
|
# pylint: disable=too-few-public-methods
|
||||||
class MtCnnClient(Detector):
|
class MtCnnClient(Detector):
|
||||||
"""
|
"""
|
||||||
Class to cover common face detection functionalitiy for MtCnn backend
|
Class to cover common face detection functionalitiy for MtCnn backend
|
||||||
@ -12,14 +14,28 @@ class MtCnnClient(Detector):
|
|||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.model = MTCNN()
|
self.model = MTCNN()
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with mtcnn
|
Detect and align face with mtcnn
|
||||||
Args:
|
Args:
|
||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
|
|
||||||
resp = []
|
resp = []
|
||||||
@ -32,17 +48,17 @@ class MtCnnClient(Detector):
|
|||||||
|
|
||||||
if len(detections) > 0:
|
if len(detections) > 0:
|
||||||
|
|
||||||
for detection in detections:
|
for current_detection in detections:
|
||||||
x, y, w, h = detection["box"]
|
x, y, w, h = current_detection["box"]
|
||||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||||
img_region = [x, y, w, h]
|
img_region = [x, y, w, h]
|
||||||
confidence = detection["confidence"]
|
confidence = current_detection["confidence"]
|
||||||
|
|
||||||
if align:
|
if align:
|
||||||
keypoints = detection["keypoints"]
|
keypoints = current_detection["keypoints"]
|
||||||
left_eye = keypoints["left_eye"]
|
left_eye = keypoints["left_eye"]
|
||||||
right_eye = keypoints["right_eye"]
|
right_eye = keypoints["right_eye"]
|
||||||
detected_face = self.align_face(
|
detected_face = detection.align_face(
|
||||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,8 +1,9 @@
|
|||||||
import os
|
import os
|
||||||
from typing import Any
|
from typing import Any, List, Tuple
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from deepface.models.Detector import Detector
|
from deepface.models.Detector import Detector
|
||||||
|
from deepface.modules import detection
|
||||||
|
|
||||||
|
|
||||||
class OpenCvClient(Detector):
|
class OpenCvClient(Detector):
|
||||||
@ -24,7 +25,9 @@ class OpenCvClient(Detector):
|
|||||||
detector["eye_detector"] = self.__build_cascade("haarcascade_eye")
|
detector["eye_detector"] = self.__build_cascade("haarcascade_eye")
|
||||||
return detector
|
return detector
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with opencv
|
Detect and align face with opencv
|
||||||
Args:
|
Args:
|
||||||
@ -32,7 +35,19 @@ class OpenCvClient(Detector):
|
|||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
resp = []
|
resp = []
|
||||||
|
|
||||||
@ -56,7 +71,7 @@ class OpenCvClient(Detector):
|
|||||||
|
|
||||||
if align:
|
if align:
|
||||||
left_eye, right_eye = self.find_eyes(img=detected_face)
|
left_eye, right_eye = self.find_eyes(img=detected_face)
|
||||||
detected_face = self.align_face(detected_face, left_eye, right_eye)
|
detected_face = detection.align_face(detected_face, left_eye, right_eye)
|
||||||
|
|
||||||
img_region = [x, y, w, h]
|
img_region = [x, y, w, h]
|
||||||
|
|
||||||
|
@ -1,21 +1,36 @@
|
|||||||
|
from typing import List, Tuple
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from retinaface import RetinaFace as rf
|
from retinaface import RetinaFace as rf
|
||||||
from retinaface.commons import postprocess
|
from retinaface.commons import postprocess
|
||||||
from deepface.models.Detector import Detector
|
from deepface.models.Detector import Detector
|
||||||
|
|
||||||
|
# pylint: disable=too-few-public-methods
|
||||||
class RetinaFaceClient(Detector):
|
class RetinaFaceClient(Detector):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.model = rf.build_model()
|
self.model = rf.build_model()
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with retinaface
|
Detect and align face with retinaface
|
||||||
Args:
|
Args:
|
||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
resp = []
|
resp = []
|
||||||
|
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
from typing import List, Tuple
|
||||||
import os
|
import os
|
||||||
import gdown
|
import gdown
|
||||||
import cv2
|
import cv2
|
||||||
@ -6,6 +7,7 @@ import numpy as np
|
|||||||
from deepface.detectors import OpenCv
|
from deepface.detectors import OpenCv
|
||||||
from deepface.commons import functions
|
from deepface.commons import functions
|
||||||
from deepface.models.Detector import Detector
|
from deepface.models.Detector import Detector
|
||||||
|
from deepface.modules import detection
|
||||||
from deepface.commons.logger import Logger
|
from deepface.commons.logger import Logger
|
||||||
|
|
||||||
logger = Logger(module="detectors.SsdWrapper")
|
logger = Logger(module="detectors.SsdWrapper")
|
||||||
@ -69,14 +71,28 @@ class SsdClient(Detector):
|
|||||||
|
|
||||||
return detector
|
return detector
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with ssd
|
Detect and align face with ssd
|
||||||
Args:
|
Args:
|
||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
resp = []
|
resp = []
|
||||||
|
|
||||||
@ -134,9 +150,9 @@ class SsdClient(Detector):
|
|||||||
confidence = instance["confidence"]
|
confidence = instance["confidence"]
|
||||||
|
|
||||||
if align:
|
if align:
|
||||||
opencv_module: OpenCv.OpenCv = self.model["opencv_module"]
|
opencv_module: OpenCv.OpenCvClient = self.model["opencv_module"]
|
||||||
left_eye, right_eye = opencv_module.find_eyes(detected_face)
|
left_eye, right_eye = opencv_module.find_eyes(detected_face)
|
||||||
detected_face = self.align_face(
|
detected_face = detection.align_face(
|
||||||
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
img=detected_face, left_eye=left_eye, right_eye=right_eye
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
from typing import Any
|
from typing import Any, List, Tuple
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from deepface.models.Detector import Detector
|
from deepface.models.Detector import Detector
|
||||||
|
from deepface.modules import detection
|
||||||
from deepface.commons.logger import Logger
|
from deepface.commons.logger import Logger
|
||||||
|
|
||||||
logger = Logger()
|
logger = Logger()
|
||||||
@ -50,7 +51,9 @@ class YoloClient(Detector):
|
|||||||
# Return face_detector
|
# Return face_detector
|
||||||
return YOLO(weight_path)
|
return YOLO(weight_path)
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = False) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = False
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with yolo
|
Detect and align face with yolo
|
||||||
Args:
|
Args:
|
||||||
@ -58,7 +61,19 @@ class YoloClient(Detector):
|
|||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
resp = []
|
resp = []
|
||||||
|
|
||||||
@ -85,7 +100,7 @@ class YoloClient(Detector):
|
|||||||
left_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
left_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
||||||
and right_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
and right_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
||||||
):
|
):
|
||||||
detected_face = self.align_face(
|
detected_face = detection.align_face(
|
||||||
img=detected_face, left_eye=left_eye[0].cpu(), right_eye=right_eye[0].cpu()
|
img=detected_face, left_eye=left_eye[0].cpu(), right_eye=right_eye[0].cpu()
|
||||||
)
|
)
|
||||||
resp.append((detected_face, [x, y, w, h], confidence))
|
resp.append((detected_face, [x, y, w, h], confidence))
|
||||||
|
@ -1,11 +1,12 @@
|
|||||||
import os
|
import os
|
||||||
from typing import Any
|
from typing import Any, List, Tuple
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import gdown
|
import gdown
|
||||||
from deepface.commons import functions
|
from deepface.commons import functions
|
||||||
from deepface.commons.logger import Logger
|
|
||||||
from deepface.models.Detector import Detector
|
from deepface.models.Detector import Detector
|
||||||
|
from deepface.modules import detection
|
||||||
|
from deepface.commons.logger import Logger
|
||||||
|
|
||||||
logger = Logger(module="detectors.YunetWrapper")
|
logger = Logger(module="detectors.YunetWrapper")
|
||||||
|
|
||||||
@ -41,14 +42,28 @@ class YuNetClient(Detector):
|
|||||||
) from err
|
) from err
|
||||||
return face_detector
|
return face_detector
|
||||||
|
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
"""
|
"""
|
||||||
Detect and align face with yunet
|
Detect and align face with yunet
|
||||||
Args:
|
Args:
|
||||||
img (np.ndarray): pre-loaded image
|
img (np.ndarray): pre-loaded image
|
||||||
align (bool): default is true
|
align (bool): default is true
|
||||||
Returns:
|
Returns:
|
||||||
list of detected and aligned faces
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
# FaceDetector.detect_faces does not support score_threshold parameter.
|
# FaceDetector.detect_faces does not support score_threshold parameter.
|
||||||
# We can set it via environment variable.
|
# We can set it via environment variable.
|
||||||
@ -107,6 +122,6 @@ class YuNetClient(Detector):
|
|||||||
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
|
||||||
img_region = [x, y, w, h]
|
img_region = [x, y, w, h]
|
||||||
if align:
|
if align:
|
||||||
detected_face = self.align_face(detected_face, (x_re, y_re), (x_le, y_le))
|
detected_face = detection.align_face(detected_face, (x_re, y_re), (x_le, y_le))
|
||||||
resp.append((detected_face, img_region, confidence))
|
resp.append((detected_face, img_region, confidence))
|
||||||
return resp
|
return resp
|
||||||
|
@ -1,42 +1,34 @@
|
|||||||
|
from typing import List, Tuple
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from typing import Union, Optional
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
# Notice that all facial detector models must be inherited from this class
|
# Notice that all facial detector models must be inherited from this class
|
||||||
|
|
||||||
|
|
||||||
|
# pylint: disable=unnecessary-pass, too-few-public-methods
|
||||||
class Detector(ABC):
|
class Detector(ABC):
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def detect_faces(self, img: np.ndarray, align: bool = True) -> list:
|
def detect_faces(
|
||||||
pass
|
self, img: np.ndarray, align: bool = True
|
||||||
|
) -> List[Tuple[np.ndarray, List[float], float]]:
|
||||||
def align_face(
|
|
||||||
self,
|
|
||||||
img: np.ndarray,
|
|
||||||
left_eye: Optional[Union[list, tuple]] = None,
|
|
||||||
right_eye: Optional[Union[list, tuple]] = None,
|
|
||||||
) -> np.ndarray:
|
|
||||||
"""
|
"""
|
||||||
Align a given image horizantally with respect to their left and right eye locations
|
Detect faces from a given image
|
||||||
Args:
|
Args:
|
||||||
img (np.ndarray): pre-loaded image with detected face
|
img (np.ndarray): pre-loaded image as a NumPy array
|
||||||
left_eye (list or tuple): coordinates of left eye with respect to the you
|
align (bool): enable or disable alignment after face detection
|
||||||
right_eye(list or tuple): coordinates of right eye with respect to the you
|
|
||||||
Returns:
|
Returns:
|
||||||
img (np.ndarray): aligned facial image
|
results (List[Tuple[np.ndarray, List[float], float]]): A list of tuples
|
||||||
|
where each tuple contains:
|
||||||
|
- detected_face (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- face_region (List[float]): The image region represented as
|
||||||
|
a list of floats e.g. [x, y, w, h]
|
||||||
|
- confidence (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
results = [
|
||||||
|
(array(..., dtype=uint8), [110, 60, 150, 380], 0.99),
|
||||||
|
(array(..., dtype=uint8), [150, 50, 299, 375], 0.98),
|
||||||
|
(array(..., dtype=uint8), [120, 55, 300, 371], 0.96),
|
||||||
|
]
|
||||||
"""
|
"""
|
||||||
# if eye could not be detected for the given image, return image itself
|
pass
|
||||||
if left_eye is None or right_eye is None:
|
|
||||||
return img
|
|
||||||
|
|
||||||
# sometimes unexpectedly detected images come with nil dimensions
|
|
||||||
if img.shape[0] == 0 or img.shape[1] == 0:
|
|
||||||
return img
|
|
||||||
|
|
||||||
angle = float(
|
|
||||||
np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0]))
|
|
||||||
)
|
|
||||||
img = Image.fromarray(img)
|
|
||||||
img = np.array(img.rotate(angle))
|
|
||||||
return img
|
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from typing import Any, Union
|
from typing import Any, Union, List
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from deepface.commons import functions
|
from deepface.commons import functions
|
||||||
|
|
||||||
@ -17,5 +17,5 @@ class FacialRecognition(ABC):
|
|||||||
model_name: str
|
model_name: str
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def find_embeddings(self, img: np.ndarray) -> list:
|
def find_embeddings(self, img: np.ndarray) -> List[float]:
|
||||||
pass
|
pass
|
||||||
|
@ -3,6 +3,7 @@ from typing import Any, Dict, List, Tuple, Union
|
|||||||
|
|
||||||
# 3rd part dependencies
|
# 3rd part dependencies
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
# project dependencies
|
# project dependencies
|
||||||
from deepface.commons import functions
|
from deepface.commons import functions
|
||||||
@ -40,8 +41,11 @@ def extract_faces(
|
|||||||
grayscale (boolean): extracting faces in rgb or gray scale
|
grayscale (boolean): extracting faces in rgb or gray scale
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
list of dictionaries. Each dictionary will have facial image itself (RGB),
|
results (List[Dict[str, Any]]): A list of dictionaries, where each dictionary contains:
|
||||||
extracted area from the original image and confidence score.
|
- "face" (np.ndarray): The detected face as a NumPy array.
|
||||||
|
- "facial_area" (List[float]): The detected face's regions represented as a list of floats.
|
||||||
|
- "confidence" (float): The confidence score associated with the detected face.
|
||||||
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -70,3 +74,31 @@ def extract_faces(
|
|||||||
resp_objs.append(resp_obj)
|
resp_objs.append(resp_obj)
|
||||||
|
|
||||||
return resp_objs
|
return resp_objs
|
||||||
|
|
||||||
|
|
||||||
|
def align_face(
|
||||||
|
img: np.ndarray,
|
||||||
|
left_eye: Union[list, tuple],
|
||||||
|
right_eye: Union[list, tuple],
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Align a given image horizantally with respect to their left and right eye locations
|
||||||
|
Args:
|
||||||
|
img (np.ndarray): pre-loaded image with detected face
|
||||||
|
left_eye (list or tuple): coordinates of left eye with respect to the you
|
||||||
|
right_eye(list or tuple): coordinates of right eye with respect to the you
|
||||||
|
Returns:
|
||||||
|
img (np.ndarray): aligned facial image
|
||||||
|
"""
|
||||||
|
# if eye could not be detected for the given image, return image itself
|
||||||
|
if left_eye is None or right_eye is None:
|
||||||
|
return img
|
||||||
|
|
||||||
|
# sometimes unexpectedly detected images come with nil dimensions
|
||||||
|
if img.shape[0] == 0 or img.shape[1] == 0:
|
||||||
|
return img
|
||||||
|
|
||||||
|
angle = float(np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0])))
|
||||||
|
img = Image.fromarray(img)
|
||||||
|
img = np.array(img.rotate(angle))
|
||||||
|
return img
|
||||||
|
Loading…
x
Reference in New Issue
Block a user